IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 5, NO. 1, MARCH 2015 51

Phase Change Memory Write Cost Minimization
by Data Encoding

Azalia Mirhoseini, Student Member, IEEE, Miodrag Potkonjak, Member, IEEE, and
Farinaz Koushanfar, Senior Member, IEEE

Abstract—Phase change memory (PCM) is a promising next
generation nonvolatile memory. Despite the currently popular
charge-based storage techniques, PCM leverages a much more
scalable thermal-resistive mechanism that enables sub-10 nm
feature sizes. To realize PCM's potential, there are a number of
technical challenges that need to be addressed, including limited
wear endurance and high energy consumption of bit writes.
Our work introduces a novel set of tools and methodologies for
encoding data on PCM that optimizes its write performance.
We develop a framework which exploits asymmetries in PCM
read/write. We show that this coding problem is NP-complete. To
provide a tractable solution, we propose two different methods:
the first uses integer linear programming, and the second leverages
dynamic programming to find an approximation of the optimal
solution. Our methods target both single and multi-level cell PCM
and can be directly applied to any asymmetric nonvolatile memory
with bit-level accessibility. We further optimize our codes by
leveraging data distributions. We devise a low-overhead architec-
ture for the encoder module which can be easily integrated within
the existing computer memory architecture. We demonstrate
the applicability, low overhead, and efficiency of our proposed
framework with extensive evaluations.

Index Terms—Encoding, memory management, optimization,
phase change memory.

I. INTRODUCTION

N THE design of digital integrated circuits and systems,

memory often significantly impacts the system's imple-
mentation cost, overhead, and performance. Currently, there is
an ever increasing performance gap between emerging (multi)
processor families and memory. For portable devices and em-
bedded systems with constrained energy sources, minimizing
memory energy dissipation becomes excessively important [9].
Improving and scaling the currently used storage technologies
would have a limited effectiveness in the long run, especially
as the miniaturized technologies reach the limits of the silicon
[21]. The newer resistive memory technologies enable an

Manuscript received March 29, 2014; revised August 16, 2014; accepted
November 12, 2014. Date of publication February 25, 2015; date of current ver-
sion March 09, 2015. This paper was recommended by Guest Editor H. Hunter.

A. Mirhoseini and F. Koushanfar are with the Department of Electrical and
Computer Engineering, Rice University, Houston, TX 77005 USA (e-mail:
azalia@rice.edu; farinaz@rice.edu).

M. Potkonjak is with the Department of Computer Science, University of
California, Los Angeles, CA 90095 USA (e-mail: miodrag@cs.ucla.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JETCAS.2015.2398211

alternative or a hybrid solution that could bridge the growing
performance gap between processing and storage.

The data storage mechanism for resistive memories is built
upon the large electrical resistance discrepancy between the
states of a phase change material. In one phase (state), the
material is amorphous and has a very high resistance. In
another phase, the same material is crystalline and is highly
conductive. Extensive research in the field of phase change
material has developed new nonvolatile memory cell structures
with improved performance, integration, endurance, retention,
and yield properties [20], [29].

This paper aims at minimizing the number of bit transitions
required for writing data on phase change memory (PCM) by
developing encoding methods. Minimizing the number of bit
transitions provides energy and endurance enhancement. Our
general optimization can be easily integrated with the processor
architecture and memory interface and incurs very low over-
head. The method is largely transparent and orthogonal to other
energy saving transformations and methods. The proposed re-
sistive memory encoding utilizes bitwise manipulation ability
during the word overwrites; only the bits that are changing for
the new word compared to the existing word in the memory lo-
cation would require overwriting. The encoding ensures that the
number of required overwrites is minimized. Our optimizations
capture asymmetries in energy cost of read, set, and reset op-
erations. We provide a general optimization/coding framework
that not only works for PCM but can be directly applied to any
bit-accessible asymmetric memory.

A special case of data encoding for minimizing the unidi-
rectional transitions in the memory is the write-once memory
(WOM) coding that was originally proposed by Rivest and
Shamir [30]. They assumed a memory model where the bits
could only be set (and could not be reset). Their the goal was
to increase the number of effective cycles for rewriting to the
memory. Subsequent interesting work has followed, mostly in
information theory and coding, with the goal of estimating the
capacity and finding more efficient WOM codes. Applications
and extensions of this model for improving flash memory
lifetime have been studied [18], [24], [36]. These methods
however cannot be directly applied to PCM since PCM has
distinctive energy characteristics. Other research works have
specifically focused on improving PCM endurance and energy
consumption. Reducing the number of cell programming for
data updates or flipping data to minimize reprogramming
redundant bits are prominent approaches [13], [17], [33], [38].
Our work generalizes the above methods by devising codes for

2156-3357 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

52 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 5, NO. 1, MARCH 2015

minimizing the cost of bi-directional bit transitions for PCM
write operations.

The large space of possibilities provided by the ability to per-
form bit-level operations and the asymmetry in setting and re-
setting transitions have encouraged us to develop new coding
schemes to improve PCM's energy consumption. The compli-
cating factors for this problem are the new degrees of freedom
and the curse-of-dimensionality due to the exponential number
of plausible code combinations. To address these challenges, we
present a novel formal handling of the energy minimization for
resistive memory and other storage technologies with bit-level
operations and simultaneous consideration of the set and reset
transition energy costs. Our contributions are as follows.

* A formal treatment and formulation of PCM coding, with
the goal of minimizing the cost of bit transitions required
for writes. We show that the problem is NP-complete.

* A methodology for deriving the optimal bounds for codes
that yield minimum bit-transition cost.

* An integer linear programming (ILP) formulation that can
find the optimal solution to the problem. Our ILP frame-
work can integrate both symmetric and asymmetric set/
reset costs for different code sizes.

* A new alternative fast and efficient algorithms for ad-
dressing the problem for runtime and efficiency reasons.
The method builds upon the smaller optimal codes using
dynamic programming (DP).

* An efficient distribution-aware data encoding method for
nonuniformly distributed data.

* A novel write cost minimization coding technique for
multi-level cell PCM.

* Anefficient and highly integrable architecture for the coder
module.

» Evaluation of the proposed encoding methods on a diverse
set of data including image, audio, and text files.

An earlier version of this work has appeared in [25]. The
new aspects of the current manuscript include 1) proof for
NP-completeness of our problem, 2) detailed discussion of our
ILP method in Section VI-A, 3) new studies of our codings
from the perspective of memory durability in Section VII, 4)
proposing a new energy-aware coding for multi-level cell PCM
in Section VIII, 5) devising a new architecture for our encoding
module presented in Section IX, lastly 6) providing additional
experiments to evaluate the performance of the new schemes
in Section X.

The remainder of this paper is organized as follows. The
relevant literature is surveyed in Section II. PCM operation
and model is discussed in Section III. An overview of our
approach is presented in Section I'V. In Section V, we formally
define the energy saving data encoding problem and discusses
its complexity. Our method for finding the optimum bounds
on the codes is also presented. In Section VI, we provide our
solutions for the write-efficient coding problem and analyze its
complexity. In Section VII, we study how our method affects
PCM from the memory wear perspective. We present our
novel write-efficient coding for multi-level cell phase change
memory in Section VIII. We provide the architecture of our
coding algorithm in Section IX. Evaluations of the methods on

several benchmark data sets are presented in Section X. We
conclude in Section XI.

II. RELATED WORK

Recent advances in resistive memory material and device
technology have paved the way for building PCM devices that
are comparable or better than conventional solid state memory
and DRAM in terms of certain properties. The field has been
rapidly growing in recent years both in research and in terms
of industrial prototypes, making PCM among the most viable
emerging technology for the next generation storage devices
[23], [34].

The concept of using the resistance alteration in phase-change
material for storage has been known for more than forty years
now [32]. Historically, the performance of resistive memories
was not on par with the contemporary solid state and DRAM
storage alternatives. During the past 15 years, there has been an
unprecedented growth in this technology driven by its desirable
characteristics and extensive research in the field. A number of
recent work have shown significant improvements in memory
performance by integrating PCM within the hybrid storage hi-
erarchy [14], [22], [35], [39].

Previous PCM research introduced methods for rewriting to
the memory cells such that the writes to all bits have a uniform
distribution. The heavily used written lines are remapped to the
less frequently utilized locations by the memory management
unit [28]. It has been demonstrated that the PCM endurance, re-
liability, and energy consumption would greatly improve if the
redundant writes are avoided, i.e., by reading the existing con-
tents of the bits and only programming those bits that must be
changed. The method is called data-comparison-write (DCW),
[38].

Flip-N-Write (FNW) is a protocol that adds an indicator bit to
each word to determine if the word is inverted or not [13]. PCM
controller can write the data in an inverted form if it requires less
number of bit changes to reduce bit transition costs. Due to the
noticeable asymmetry in cell-write energies of multi-level cell
memories such as PCM and PRAM, a few encoding schemes
also suggested bit-flip-based approaches to reduce the number
of read and writes on expensive memory cells [17], [33]. Our
paper formalizes, provides proofs and generalizes the bit-flip
based methods beyond adding a single bit/cell by devising codes
of length N + K for words of length V, where K > 1. We con-
sider the asymmetric set and reset energy costs. We will show
that significant improvements in write energy and endurance are
achieved at the expense of allowing a few extra storage bits.

Some of the existing digital storage mechanisms, including
the optical storage, only allow for one directional transition of
the bits. Write-once memory (WOM) encoding was introduced
in a classic paper by Rivest and Shamir [30] to increase the
number of writes to such memories with one directional bit set-
ting (in an irreversible fashion). A flurry of subsequent research
have centered on improving and generalizing the WOM codes
and to extend its reach to other memory models. For example,
NAND flash memory has been modeled as a one-way transi-
tional memory. Thus, generalizations of the WOM codes have
been applied to this class of memories [18], [24], [36].

MIRHOSEINI et al.: PHASE CHANGE MEMORY WRITE COST MINIMIZATION BY DATA ENCODING 53

Metal
eta Reset pulse

Heating element

g
3

Programmable E

region g.
£ Set pulse
O
™

Chalcogenide
Metal Read pulse
[
Time

(a) (b)

Fig. 1. (a) Cross section of a PCM cell. (b) Electric current amplitude and du-
ration control the set, reset, and read operations.

For the PCM devices, the WOM model and the flash encoding
methods do not correctly capture the specifics of the technology.
One reason is that the energy discrepancy ratio between the set
and reset commands on the PCM is much less subtle when com-
pared to the NAND flash memory devices. The other (perhaps
more important) reason, is the ability to perform bit-level ma-
nipulation on the PCM, as opposed to block-level operations on
NAND flash. The bit-level operations for PCM have been used
earlier for error correcting codes [31]. The work in [31] focused
on developing error correction for PCM. Since the faulty bits
are rather static, they have demonstrated that error correcting
pointers (ECP) that include the knowledge of the fault loca-
tion, are much more efficient than classic error correcting codes
(ECC:s). Error correction is orthogonal to our write efficient data
encoding method.

Write-efficient memory or WEM is an extension of WOM
that has been introduced in [8]. The objective of WEM codes is
to minimize the overall number of transitions, and therefore, its
goal is close to our encoding case. However, WEM's underlying
assumption is that the costs of a set and reset are equal. Also, to
the best of our knowledge, the few papers available on WEM
have mainly focused on developing bounds but did not provide
a coding method, or an optimality guarantee, or they centered
on constructing suitable error correcting codes, e.g., [16], [26].
Aside from the loose bounds and the error correction, we have
not been able to find WEM codes that are applicable to the PCM.
Besides, we did not find a transform or proof of the problem's
NP-completeness in the earlier literature, even though the con-
cept was suggested.

III. PCM OPERATION AND ENERGY MODEL

Single-Level Cell PCM: A key challenge for nonvolatile
memory technology, in particular flash, is the high energy cost
of writes [34]. The speed of writing and reading from the caches
and from the DRAM is often high, and therefore, the number of
transitions is higher than the external memories. Since resistive
memory is suggested for replacing and complementing various
storage units in the memory hierarchy, saving the energy cost
of set and reset transitions is of a high value [28], [34].

As shown in Fig. 1(a), the current flows through the phase
change material (chalcogenide) from the electrode/metal to the
heater. This current is provided as a pulse, and its duration and
amplitude controls the temperature needed for the set and reset

operations. Heating the phase change material above a crystal-
lization temperature by applying an average current with a wide
duration pulse results in the set operation. A very high current
(melt quenching) pulse with a short duration resets the device
to its amorphous state. The read is done by applying a very low
amplitude and low power pulse that senses the device resistance.
The shape of the three pulses used for set, reset, and read com-
mands are plotted in Fig. 1(b) ([34]). The energy discrepancy
between the PCM set and reset operations has been experimen-
tally demonstrated and quantified, e.g., [10].

Multi-Level Cell (MLC) PCM: The large difference between
set and reset resistances in PCM has enabled devising multi-
level cell PCM. As opposed to the conventional single-level
PCM, the randomness and variability in MLC PCM structure
makes it impossible to have a universal pulse shape to attain in-
termediate resistance levels. Instead, program and verify (P&V)
is the technique that is used to obtain different resistance distri-
butions for PCM [11]. P&V applies partial program pulses it-
eratively and then verifies if the desired cell level is achieved.
The iterative approach causes MLC PCM to incur an order of
magnitude more write energy than the single-level PCM.

One of the main challenges in prototyping MLC PCM is
the relaxation effect that induces resistance drift in the phase-
change material over time. The drift is particularly important
in MLC PCM due to the high sensitivity of the cell state to re-
sistance. Different memory sensing and error correction tech-
niques have been proposed to develop more robust MLC PCM
systems [12], [19], [37]. IBM has announced implementing the
first drift-tolerant 2-bit cell PCM in 2011 [27].

IV. OVERALL FLOW OF OUR CODING METHOD

Our coding scheme improves performance by reducing the
cost incurred by bit transitions for writing data on PCM. We
divide the input stream of data into N-bit portions and refer to
them as N-bit words. There is a total of 2% of such N-bit words.
Our objective is to design codes such that the cost of writing
codes is less than the cost of writing words. We develop mul-
tiple codes for each word. Instead of writing a new word on
the memory, we write one of its codes. For choosing the best
code, we first read the data which is going to be overwritten by
the new word. Next among all the codes of the new word, we
choose the one that incurs minimum bit transition cost for over-
writing the existing data. The following example sheds light on
how the coding scheme works and why it is beneficial.

A Word Encoding/Decoding Example: In this example, we
provide the optimal solution for encoding 2-bit words with 3-bit
codes. We denote the words by 4 = 00, B = 01, C' = 10, and
D = 11; and denote the codes corresponding to the word A
by 4; and A,, the codes for B by By and B, and so on. We
denote by Es and Eg, the energy spent on a bit set and a bit
reset, respectively.

Fig. 2 shows our developed codes. The coding improves the
energy consumption in the following way. Assume that we want
to overwrite word B by C. The energy cost of a direct overwrite
is Eg + Er. However, if we apply the coding scheme, B is
written on the memory (encoded) either as B; = 010 or as
B, = 101. In case B is encoded as By, between the the two
possible codes for C', we choose C; = 011 to overwrite B,

54 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 5, NO. 1, MARCH 2015

Fig. 2. A 3-bit encoding for 2-bit words. Words are A, B, C, and D; Each
word has two codes/representations. The codes for A are A; and As, the codes
for B are By and By and so on. E'g and Er are set and reset energies. Cost of
overwriting C' by B is reduced from Es + Ex (without any coding) to either
Eg or Eg (using our encoding).

Memory
Controller &

Data Code/ W1
Decode Vl_v

Fig. 3. Data encoder/decoder is shown as an embedded module in the memory
controller.

CPU

&

since the overwrite costs only a bit reset or E'r. Note that we do
not change the similar bits of By and C5 while overwriting. On
the other hand, if B is currently coded as B, then we encode
C by C7 = 100, since the overwrite cost would be a bit reset or
FEg. Thus, we have reduced the overwrite cost from Es + Er
to either F¢g or Eg.

Now we provide an example that shows how the coding im-
proves the energy cost over a cycle of data overwrites. The fol-
lowing is a chain of overwriting words: 4 - B — C — D
— A. Assume that A is coded as Aj;; the best encoding of the
words are as follows: 41 — By — Cy — Dy — A;. The cost
associated with the code overwrites is Fs + Fg + Er + Eg =
2.Eg + 2.ER. However, the cost for overwriting the words di-
rectly and without coding is Es + (Es+ Eg)+ Es+ (2.Eg) =
3.Eg + 3.Eg. Thus, the coding reduces the overwrite cost by
one-third.

All the codes have equal lengths. Since we assign more than
one code to each word, the size of the codes are more than
the words. Thus, the efficiency is achieved at the expense of
memory overhead. For a given budget for memory overhead,
our algorithm develops the codes offline and the complexity of
designing the codes does not affect the realtime performance of
the system. The resulting codes from our algorithms are then
saved in the memory controller which interfaces with the PCM
on one side and with the processing unit on the other side.
Fig. 3 presents an abstract view of the placement of the data
encoding/decoding module for our method. The details of the
architecture of the encoder/decoder module and its overhead
will be discussed in Section IX.

V. PROBLEM FORMULATION, COMPLEXITY, AND BOUNDS

We provide an encoding schemes that assign multiple repre-
sentations (or codes) to each word in the data set. We can for-
mally define our problem as follows.

Problem: Minimize the transition cost of PCM writes.

Given: The word and the code (symbol) lengths in bits de-
noted by N and N + K respectively, where K > 1. Each word
is represented by 2% symbols. The read, set, and reset costs of
a memory cell are denoted by Cieaq, and Cg, and Cg, respec-
tively.

Objective: Find the best codes for each word such that they
minimize the average energy cost of overwrites. We refer to this
problem as P{N, K).

A. Problem Formulation

We denote the words by Wy, W, ..
codes corresponding to word W; by Z;;, where 1 < 1 <
Function @ finds the energy required to overwrite a currently
written symbol by a symbol of the next word that would incur
the minimum transition cost

., Wy~ and denote the
2K,

¢ (Zy, W) = min {C(Zy;, Zpir), V1 <4’ <25} (1)
The cost function C' measures the cost of overwriting a symbol
by another one. To overwrite Z;; with Zy:;+, if Ng number of bit
sets and Vg number of bit resets are needed, then C' would be

O(Zli, erif) = (N + I().Cread + (Ns).CS -+ (NR)CR 2)

In the above equation, the first term shows the cost for reading
the bits of the existing symbol in the memory (Z;;). We ig-
nore this cost as it is two orders of magnitude less than the cost
of a reset. The next two terms show the cost for the overwrite
process. Similar bits in the two symbols remain untouched. The
objective function (OF) can be written as follows:

1
aNTE O > ¢(Zu W)

1<,/ <2N 1<i<2K

min C(N, K) =

3)
Function C(N, K) represents the average transition cost for
all possible overwrites. The goal is to assign symbols/codes to
words such that this cost is minimized.

B. Problem Complexity

We have expressed the energy minimizing coding problem
as an instance of a distance-based graph clustering problem;
each cluster corresponds to a word and the nodes that belong
to a cluster are different codes for the cluster's associated word.
The goal is to minimize the inter-cluster distances. In the en-
ergy minimizing encoding scenario, the inter-cluster distance is
the average distance between the code symbols in one cluster
and the closest code symbol in every other cluster. Our ex-
ample demonstrates the interpretation of the data coding as a
graph problem. Extensive prior work on distance-based graph
clustering have shown that this problem is NP-complete [7].
In the following we prove that we can reduce the well-known

MIRHOSEINI et al.: PHASE CHANGE MEMORY WRITE COST MINIMIZATION BY DATA ENCODING 55

graph clustering to our encoding problem, and conclude that our
problem is NP-complete as well.

We analyze the complexity of creating a PCM code that re-
sults in the minimum energy consumption for given costs of
writing 0 after 1 and writing 1 after 0.

There are many degrees of freedom in the solution space
that impact the complexity of the problem including uncertainty
about the sequence of words that are written, the relative cost of
recording 0 and 1, the number of bits used for each word, and
how many symbols are used for each word. In order to make
the problem tractable from the computation complexity point
of view we assume that the input sequence of words is known,
and that the number of used bits and the number of symbols
per word are specified. Furthermore, to enable a clear mapping
from a known NP-complete problem to our minimum energy
problem, we consider (without loss of generality) a special case
of this problem that we denote as the minimum energy (ME)
problem.

We start by introducing the notation that follows from Fiat
and Shamir [15]. The number of bits per word is denoted by k.
Each word can be written a total of ¢ times, corresponding to
the number of generations, and there are v values (symbols) for
each word. Fiat and Shamir's paper asks for w({v)?), i.e., for
the minimum number of bits sufficient to write each of v values
t times. Their main result is that the problem is NP-complete
if v is at least three or the number of generations is least two.
Otherwise the problem can be solved in polynomial time.

The relevant special case of our problem is the one in which
the cost of writing 0 after 1 (setting), Cy, is at least somewhat
more expensive than the energy cost of writing 1 after 0 (re-
setting), C'r, kt times. In addition, we restrict our instances of
the input sequences to ones in which each symbol is written at
most ¢ times. The question in our energy minimization problem
would become: is there a write once memory code for which the
given sequence takes at most C'r energy.

The essence of any NP-completeness problem is to map it to
a known NP-complete problem. In our case we use the general-
ized write once memory coding (WOM) problem in which we
write v words ¢ times using k bits. We map the WOM problem
to our problem by keeping input parameters k, £, and v identical.
It is easy to see that if our new problem is solved optimally than
we have a solution for the WOM problem. The key observation
is that we can accomplish the writings in ME only if we never
write 0 after 1 at any position in any word. And that is exactly
the condition that is required by the WOM problem. Therefore,
ME is an NP-complete problem.

C. Optimal Bounds on the OF

In this part, we provide a lower bound for the OF. The
average cost of overwriting each symbol Z;; with the
other words is determined by the following formulation:
(/2N = 1), ¢(Zi, W) for I/ # land1 > I < 2V,
An optimal code assignment is the one that assigns each of the
closest 2% — 1 symbols to Z;; to one of the words W, # W.
This assignment gives the minimum average overwrite cost of
the symbols.

We provide a lower bound for the OF as follows. First, we cal-
culate the distances from each code Z;; to all the other 2V 5 —1

possible codes. Next, the resulting distances are sorted and the
average sum of the smallest 2%V — 1 distances are calculated for
each node. We compare our DP algorithm result with the op-
timal bound in our evaluations.

VI. SOLVING ENERGY EFFICIENT CODING PROBLEM

We propose two different approaches for addressing the
problem formulated earlier. Our first solution is based on
mapping the problem to an instance of an integer linear pro-
gramming (ILP). The method finds the optimal coding for any
given word/code width. The approach is discussed in details in
the Section VI-A. Due to the complexity of the ILP approach
which grows exponentially with the size of the coding problem
(i.e., the word and code widths), we introduce another solution
based on dynamic programming (DP) paradigm. The solution
is designed for both uniform and stochastic data. It is presented
in the Section VI-B.

A. Optimal Coding via Integer Linear Programming

An ILP problem formulation requires linear representation of
the objective function and the constraints. To the best of our
knowledge, ILP has not been used for addressing similar coding
problems before. The variables in ILP take integer values. There
is a combinatorial complexity associated with assigning values
to the variables of our NP-complete problem. The OF repre-
sented in (3) is not linear since the function ¢(.,.) is a distance
minimization function. To map the OF into a linear format, we
define variables to indicate the distance of each symbol in a
cluster from its closest symbol in every other clusters. The OF
is equivalent to the average of all these variables. Certain linear
constrains are applied to ensure the variable meets the minimum
distance criteria. The ILP method finds the optimal solution at
the expense of runtimes exponentially increasing with the code
size.

To formulate our objective function in a linear form, we de-
fine an index variable that for each symbol, keeps track of the
index of the element (in each of the other clusters) with the min-
imum distance to the symbol. The following set of variables
were used in our ILP formulation.

Word indexes W or Wy for1 <, 1’ < 2V,

i, Code indexes within each cluster, 1 < 1,
i’ < 2K,
Z1; The ith code € W; for all 4.
D5 &(Zpy, Wy) forall 1,1, i, and i’
Wy i w(Zy;, Zpyr) forall 1,1, 4, and @',
Aqprise wyprsy — Oy forall, ', ¢, and 4’
Xiij jth significant bit of Z; for 1 < j < (N + K).
Fiprian w(Xyj, Xpirj) forall 1, ', 4,4, and j.
Idypy An indicator binary; =0 iff Ay = 0 for all

1,1,7,and 7'

The codes representing a word W; are shown by Z;;; ®;;
denotes the cost of overwriting Z;; by a code in Wy: that requires
the minimum overwrite energy; wy;4; is the cost of overwriting

56 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 5, NO. 1, MARCH 2015

two codes Uj; and Uy, Thus, ®;; = min,s wyyr;;. Variable
Idyp;; 1s an indicator binary variable that indicates if the closest
code to Z;; in cluster I’ is Z;;» or not. Each code Z;; consists
of N + K bits and can be written as (Xzin4 5, - - - X1i2, Xia1)-
The parameter Fjy:;;/; is defined to be the cost of overwriting
Xji; with Xj/;-; and its range of values is as follows:

Xiij Xirirg Fypryprg
0 0 0
0 1 Cs
1 0 Cr
1 1 0

Using the above variables, we define our OF and provide con-
straints to our problem in a way that conforms to the ILP format.
Our OF, as written in (3), minimizes the average cost of over-
writing the codes for all possible overwrites

OF : min W > @py; for alll’, I and i variables.
“4)
The following constraints define ®;;:;.
C1. Ayr; > 0 foralll, !’ and ¢ variables;
C2. By, arldyiy <25 —1;
C3. Idyir < Ayprgr; and
C4. CR(N + I\,)-Idl,l’ii’ > A

Constraints C1 and C2 set ®;;; not greater than each distance
Ay;r; and equal to at least one of them, respectively; Constraints
C3 and C4 define the indicator variable based on the fact that
Cr.{N + K) is always grater than A:;;.

The below linear constraints set F;+;;7; to the desired value.

C5. (1/(Cr + Cs)) Furiiry + Xuij + Xy < 25

C6. Fyprjpr; — Cr. Xy — Cs. Xpryry <05

C7. Fll’ii’j — CR.X“]‘ — CR.XZI,;/]' > O; and

C8. Fypjyy; — Cg. Xy — Cg. Xpyr; > 0.
The following constraint defines the distance w;y;:;;-.

CO. wyrgir = Yacjenyx Furiirg.
The next constraint is used to ensure that no code is assigned
to more than one word. C's is the minimum cost of overwriting
two different codes.

C10. wyri50 > Cas.

The output of the above ILP is the values of Xj;; that con-
structs the codes U;;. The above constraints are all in linear
format and can be readily implemented by any ILP solver. The
complexity and runtime for solving the instances of the ILP for
our NP-complete problem exponentially increases with the in-
stance size. In our experiments, we have been able to find the
optimal solution by using a limited version of an ILP solver li-
censed to one user for N and K (N = 2,3,4, K = 1,2).Ifone
has access to the commercial ILP solvers that run on the cloud
or supercomputers, it is likely possible to find the optimal codes
for the practical problems of longer code sizes. The longer run-
times can be tolerated since the ILP solution needs to be com-
puted only once and off-line.

B. Coding Via Dynamic Programming

In this section, we present our fast and efficient algorithms
for solving the energy efficient coding problem. We first ex-
plain our method for coding uniform data, where all words have

the same frequency of occurrence. Next, we describe our data-
aware technique that can be applied to scenarios where the dis-
tribution of the words is uneven and skewed.

1) Coding for Uniform Data: Here we first show the optimal
coding for solving the P(N, 1). Next, we show how to devise
the codes for any given P(N, k) based on the coding solutions
for the smaller instances of N and K.

Coding For P(N,1).

Claim: Optimal coding of P(N,1), for any N > 1 is
achieved by assigning the complement pairs to the words.

Proof: The optimal coding finds 2K = 2 symbols, each of
size N +1, for each word. For now, let us assume that the cost of
set and reset is equal. This makes the overwrite cost proportional
to the number of bitwise differences for the codes. The average
transition cost from each code Z;; to all the other words satisfies
the following inequality:

1 , N+1 N+1

N1<N+1> ON+1<N+1

2\ (5] >\ [

>,f0r1§l'§2N
2

where O = 1if N is odd and O = 0 otherwise. The right side of
the inequality equals (N + 1)2¥ 1. The proof of the inequality
is as follows. The nearest 2V codes to Z;; should contain all
the codes that have zero distance from it (that is Zj; itself). The
number of such codes is (N ar 1). It should also include all the
codes that are in just one bit different from Z;;; the number of
such codes is (N ;L 1). The next closest set of codes are the ones
that are in different from Zj; in 2 bits and so on. We continue
until we reach to the first closest 2%V codes to Zj;. In that case,
the number of bit differences reach to (N —1)/2 when N is even
and (N + 1)/2 when N is odd. This is because the following

equation holds:

N+1 N+1 N+1 N+1 N
()= () () o) =2
where O is the same as defined before.

Now, we show that the complement-pair coding assigns all
the above 2V codes to different words. In this case, the average
transition cost for each code Z;; will be equal to its optimal value
and thus the optimal OF is achieved. The sum of bitwise differ-
ences of Z;; from any complement pair (Zy1, Z;:2), is equal to
N + 1. This is because each bit of Z;; is equal to exactly one
of the bits of the complement pair. Thus, one symbol of each
word has a distance of less than (N + 1)/2 bits and the other
symbol has a distance of more than (N + 1)/2 bits from Z;.
This means that all the 2V — 1 closest codes to Z;; belong to
different words.]

Note that our complement results for the K = 1 case also
apply to the asymmetric set/reset costs. The number of sets and
resets for traversing from a code to its complement is not sym-
metric for most of the code words. Recall that our objective is to
minimize the average costs over all possible transitions. It can
be readily shown that for achieving the mean cost, the average
inter-complement distance can replace the two disparate transi-
tion costs between the complements.

MIRHOSEINI et al.: PHASE CHANGE MEMORY WRITE COST MINIMIZATION BY DATA ENCODING 57

Algorithm 1. Dynamic Programming for cost-aware coding

Prefix All 2N*K symbols Prefix All 2N*K symbols

Inputs: Word length: N; Desired code length N+K; C(N, 1);
optimal codes for P (N, 1) (Section VI-B1).

* Finding C(n, k) and the partitioning index index(n, k,1 : 2):
1 for (n=1 to n=N)

2 for (k=1 to k=K)

3 if (k==1)

4 C(n,k) =C(n,1);

5 else

6 for (i=1 to i=n-1)

7 for (j=1 to j=k-1)

8 if (C(n,k) >C(n—1i,k—j)+C(i,j))
9 Cln k) = C(n — i,k —) +Ci, });
10 zndem(N, K,1:2)=(i,5);

* Building the codes for P(N, K):

11 for (n=1 to n=N)

12 for (k=1 to k=K)

13 if (k==

14 P(n, k) = P(n,1) from Section VI-BI;

15 else

16 P(n, k) = code combinations from

P(n —index(n, k,1), k — index(n, k,2)) and
P(index(n, k,1), index(n, k,2));

We introduce a DP-based algorithm for solving the general
P(N, K) problem. Our algorithm uses the coding results for
P(p,q) and P(r, s) to construct the codes for P(p + r,q + s)
such that the following bounds can be achieved:

Clp+r,g+s)=C(p,q) +C(r,s). %)
The code construction is as follows. The word W; of length p+r
is partitioned into two words, W;! and W2. The first word is the
first p bits and the second word is the last r bits of W;. There are
24, p+ g-bit symbols for W} and 2¢, r + s-bit symbols for W2
that are obtained from solving P(p, ¢) and P(r, s), respectively.
We construct the codes for W; by concatenating all the possible
combinations of these two set of symbols which provides a total
of 29.2%5 = 2975 codes (of length p+ g+ 7+ s) for W;. It can be
easily seen that the codes satisfy (5). Based on the above code
construction, the DP method breaks N into smaller values and
selects the best partitioning to minimize

C(N,K) = min {minC(N
<N | j<i

-4, K —j) —I—C(i,j)} . (6)
Algorithm 1 provides the details of the DP method. The optimal
coding for P (N, 1) is given from the previous part and the algo-
rithm iteratively traverses over all the possible partitions to im-
prove the write cost minimization objective (Lines 1-10). The
index vector index(n, k, 1 : 2) is used to store the optimal par-
titioning of (n, k). After finding all the indexes, the algorithm
builds the codes (Lines 11-16). The complexity of the algorithm
is O(N2K?), but recall that this algorithm is run offline.

2) Coding for Stochastic Data: In Section V, the OF (3) min-
imizes the average write cost for all the possible word over-
writes. Here, we discuss how the inherent stochastic proper-
ties for real data scenarios can be exploited to further improve
the memory's write performance. An important fact is that dif-
ferent words occur with differing frequencies. To benefit from
this property, instead of weighting all the rewrite energy costs
equally, we aggressively optimize our encoding for the rewrites
that are more prevalent by assigning different number of codes
to the words based on their frequency of occurrence.

elofofo] N+K-bit | i[1]ofo] N+K-bit |
Prefix Al 24K symbols Prefix All 24 symbols
tlofo]1] N+K-bit | nf[a]of1] N+K-bit |
Prefix Al 24K symbols Prefix All 24K symbols
alof[1]o] N+K-bit | s[1[1]o] N+K-bit |
Prefix All 2N+K symbols 1 Prefix) %Ksymbols ofP(N,s)
olof1]1] N+K-bit omer T[] N-+K-bit |

letter:

Fig. 4. Data-aware alphabet letter codings. Prefixes are set based on data
distribution.

Variable-length and fixed-length coding are two statistical
compression techniques. In the variable-length method, shorter
codes are assigned to the more frequent words to better improve
the compression. However, this adds to the decoding complexity
and since our main goal is to minimize the write cost, decoding
efficiency is very important. Thus, we use a fixed-length coding
method. We describe our method on text files that contain Eng-
lish alphabet letters. The method can be generalized to other
data sets with nonuniform frequencies. Our data consists of the
lower-case alphabet letters: W1 = a, Wy = b,..., Wy = 2.
Since there are 26 letters, we present W;'s with 5-bit words.

Let us consider the first seven most frequent letters of the
table, e, ¢, a, o, i, n, and s. The probability that an overwrite
occurs on any of these letters (by any other letter) plus the prob-
ability that these letters overwrite any other letter accounts for
almost 60% of all probable overwrites. Thus, we can benefit a
lot by optimizing our coding for these seven letters. To do so,
we assign a different prefix to each of these letters such that
only the prefixes determine the letter. Since there are 7 letters,
the prefixes are 3-bit each and are shown in Fig. 4. The prefixes
can be interpreted as dictionary indexes. The remaining N 4+ K
bits of these letters take all the possible 2V % states. Thus, an
overwrite to/by any of these letters requires only updating the
prefix that is of length 3. The other 19 letters have the prefix
(111) as shown in the figure. The remaining N 4 K bits for
the less frequent letters are filled with the codes obtained from
solving P(N, K). By this coding, we assign 2+ symbols to
the highly frequent letters and 2% codes to the rest of the letters.
All the symbols are of length prefix — length + N + K.

VII. EFFECT OF THE ENCODING ON MEMORY WEAR

In this section, we study our encoding scheme from the
memory wear perspective. The write endurance of PCM, al-
though orders of magnitude higher than Flash memories, is still
limited and considerably less than DRAM. Wear leveling is a
technique that is widely used to diminish the limited number of
memory write cycles by managing data writes such that they
are distributed uniformly across the memory. Wear leveling is
performed by memory controller. The encoding scheme can
be used along with any conventional wear leveling technique.
After the memory controller decides the address to write the
data based on the wear leveling method, the encoding module
steps in and performs the encoding by first reading the memory
at those addresses and then accordingly finding the best codes
for the new data.

58 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 5, NO. 1, MARCH 2015

75

701

65

Wear reduction (%)

60

55

2 4 6 8 101214 16 18 20 22 24 26 28 30 32
Code length in bits

Fig.5. PCM write endurance normalized to DCW method. Each word of length
N (bits) is coded by codes of length N + 1.

The encoding improves the endurance of the memory by re-
ducing the total number of writes (sets and resets). For example,
for P(2, 1) the total number of resets and sets per code write is
0.39. However, the average number of writes per word write if
no coding is used is 0.5. In general, the average number of bit
flips for overwriting the N + 1 — bit codes is the following:

1 Elgkg [55 k. (NI;H)
N+1 2N

1(3)

2 2N @

M| =

The numerator represents the total number of bit flips required
to write an arbitrary code by the closest code of each of the
other 2V words. As mentioned in the proof of optimal coding for
P(N, 1), our coding is designated such that it limits the number
of bit flips in an overwrite to the following range: 1 < k& <
(N + 1)/2. Dividing by the denominator yields the average
number bit-flips during a code overwrite. For the N-bit word
data, without coding, the average number of bit flips is 1/2. The
proof is straightforward due to the symmetry.

Fig. 5 shows the improved write endurance with our coding
method compared to DCW method [38]. The words are of length
N and the codes are of length NV + 1. For example, for a 2-bit
word with 3-bit codes, the memory wear is improved by 50%.

Note that the wear efficiencies of codes of length 2N — 1
and 2N are equal. However, the memory overhead of an 2V -bit
code is 1/2N which is less than that of an 2N — 1-bit code that
is 1/(2N —1). Thus, it is more efficient to use codes with even
lengths for saving the memory capacity. Our dynamic program-
ming algorithm takes this property into account.

Uniformity of Bit-Flips Per Single Bit Position. We claim
that the number of bit-flips per single bit position is the same in
our coding method. Let us consider a P(N, 1) problem. The pair
of codes (or representatives) for every word W; are shown by
(Z;, Zi), where according to our method Z,; is the ones' comple-
ment of Z;. To overwrite a code Z; by a representative of every
other word w;, our encoder chooses the best one between Z; and
A 7 which we denote by Z7. Now if apply a circular bit-shift on
Z; to get Z{l, the same best code which is shifted by 1 (i.e.,
Z;fl) would be chosen to overwrite Z; *. Thus the number of
flips per bit will be shifted by one. Based on the same inference,
on average, all the bits are flipped equal number of times. Since
the solution to the general problem P (N, k) is created from a

TABLE I
REQUIRED ENERGY FOR PROGRAMMING
2-CELL PCMs

Cell level | Energy (pJ)
00 36
01 307
10 547
11 20

TABLE 11
2-CELL PCM WORDS AND THEIR CORRESPONDING 3-CELL CODES. USING OUR
ENCODING, THE TOTAL NUMBER OF COSTLY INTERMEDIATE CELLS (01 AND
10) 1S REDUCED FROM 16 IN THE 2-CELL WORDS TO 8 IN THE 3-CELL CODES

2-cell Words | 3-cell Codes
00,00 00,00,00
00,01 00,00,11
00,10 00,11,00
00,11 00,11,11
01,00 01,00,00
01,01 01,00,11
01,10 01,11,00
01,11 01,11,11
10,00 10,00,00
10,01 10,00,11
10,10 10,11,00
10,11 10,11,11
11,00 11,00,00
11,01 11,00,11
11,10 11,11,00
11,11 11,11,11

collection of smaller P(N;,1) problems, the above claim ap-
plies to all problem sizes.

VIII. MULTI-LEVEL CELL PCM

The properties of the Multi-level cell PCM varies from that
of a Single-level cell PCM. Table I shows the average required
energies for programming different levels of a 4-level cell PCM
[11], [33].

Since the required energy for programming the intermediate
levels, 01 and 10, is significantly higher than that of 00 and 11,
we decided to encode the data such that the number of 01 and
10 cells are minimized. Our method assigns N + 1-cell (2N
+ 2 — bit) codes to N-cell (2N-bit) data. There are 22V +2
different N 4 1-cell data. Our coding selects data of length N
+ 1 cells that have the minimum number of intermediate levels
and uses them to code the words of length N cells. Each word
has only one code. Here, we provide an example for 2-cell word,
3-cell codes in Table II.

As it can be observed in the table, the total number of interme-
diate levels for the words is 16, whereas there is only 8 interme-
diate levels for the corresponding codes. To observe the energy
efficiency of the code, we compare the average energy cost for
writing uniform data on the memory before and after coding.
We denote the four levels 00, 01, 10, and 11 with L1, H1, H2,
and L2, respectively. For simplicity and due to the symmetry of
the problem, we consider the write energies of L1 and L2 to be
equal to the average of their individual energies; (36 4+ 20)/2 =
28. Likewise, H1 and H2 write energies are considered to be
(307+547)/2 = 427. The average energy for writing the words
is8(L1+ H1+ H2+ L2)/16 = 455 and the average energy for
writing the codes is (20(L1+L2)+4(H1+H2))/16 = 183.75.
Thus, on average, the energy is reduced by almost 60%.

MIRHOSEINI et al.: PHASE CHANGE MEMORY WRITE COST MINIMIZATION BY DATA ENCODING 59

T T T
| Redd Buffer (N+K-bit) |
| | I

Nq+1 f

N
72L. |:'i| N+
————— LUT_1
ﬁ/ Y Nic+1
Write
\ 4
Buffer > LUT_2
(N-bit)
LUT_K
_____ Ne
Ni+1 t Nz+1 Ni+1
Y A 4

PROGRAM/SET/RESET Enable

Fig. 6. Architecture of the encoder module. Read buffer contains the existing
data from PCM and write buffer contains the new data that is going to replace
the existing data. LookUp Tables (LUTs) are used for storing predetermined
codes for P(N,1).

In the above example, despite the significant energy savings,
the 33% reduction in memory capacity (3-cell codes are used
to store 2-cell data) is not desirable. To address this problem,
we propose coding N-cell data with N + 1-cell codes for larger
N values. In this case, the memory capacity is reduced by a
factor of 1/(IN + 1). The coding uses the same technique as
the example and reduces the number of intermediate levels to
save energy. We begin with assigning all the codes with zero
intermediate levels to the words, then we assign all the codes
with one intermediate levels to the words and so on until all the
words have been assigned to a code.

Let us calculate how many N+1 cell codes with a given
number of intermediate levels, say 0 < m, are available. The
answer is equal to the number of N + 1-cell data with exactly
m, Hl and H2 levelsand N +1 — m, L1 and L2 levels. From
combinatorics, this number is equal to the following:

N+1
< +).2N+1for1§m§N+1. ®)
m
We find the minimum m, such that all the 22 words are as-

signed to the codes

N+1
z:(]<'m< N >-2N+1 SQQN (9)

= m
We denote the answer by my;,. Given the an-
swer, the average energy for a code write is
(1/22M) Socmemm, (V) 2V(m x 427+ (N

+ 1 — m) x 28). The average energy for the corresponding
word write is (| N|/2)(427 4 28).

IX. DATA ENCODER/DECODER ARCHITECTURE
AND OVERHEAD

Fig. 6 shows the architecture of the encoding unit. Existing
data in the current memory address is enqueued in the read
buffer. New data that is going to overwrite the data in the current
address is read and enqueued in the write buffer. A lookup table

TABLE III
ENCODER OVERHEAD FOR VARIOUS P({N, 1)'S ON 45 NM

N 2 3 7
Critical Path delay (ns) | 2.47 2.95 6.85
Energy (pJ) 0.11 0.16 3.00
Area (um?2) 88.4 | 3234 | 12432

is employed for storing the matching codes; given the data in
the write buffer and the data in the read buffer, the lookup table
finds the code that incurs minimum energy for the overwrite.

To measure the encoder overhead, we model its performance
in terms of area, delay, and energy. Let us first consider a
P(N,1) problem. The encoder's timing and energy overheads
are the sum of the following costs: 1) the cost of reading an
existing code from the memory which is approximately (N
+ 1)T1eaa and (N + 1)E\eaa, Where Tyeaq and Feaq are the
time and energy to read a bit of the PCM memory, receptively;
2) the cost of the lookup table.

We use the following PCM characteristics from [22]:
Torite = Ts = Tgr = 95 ns! and Tieaqa = 48 ns;
Ewrite = ES = ER = 16.35 pJ and Eread =2 pJ.

Fora P(N, 1) problem, the encoder module is a lookup table
with 2N+-1 inputs (N bits for the word and N+-1 bits for the code
that is being written onto) and N 41 bits output (for the code that
yields minimum cost). We have synthesized an ASIC design of
the encoder module using Synopsis's Design Compiler tool and
NanGate 45 nm library for N = 2,3, and 7. The clock frequency
is 500 MHz. Table III provides the synthesis performance report
of our design. Given the defined parameters the overall time and
energy overhead of P(N, 1) encoding method can be written as
Tow(N) = Ten(N)Y+ (N + 1)T1eaa and Ey (N) = Eo(N) +
(N 4 1)E,caq, respectively. It can be seen the read overhead
dominates the total overhead for both energy and time.

Based on (7) and the fact that without any encoding the av-
erage amount of flips per bit is 1 per write operation (since all
the bits are programmed), the average ratio of the time per write
in our method to that of the no-coding scheme for P(N, 1) can
be written as

! (3)
b 1- 23\1 NTwrite + Tov (N)

(10)

Twrite

The ratio for energy is

N
2 1-— 2N Ewrite + Eov (N)

Ewrite

(11)

Algorithm 1 breaks down a P(N, K) problem into a number
of P(N;, 1) sub-problems by finding the set of N;'s such that
the following objective holds:

min Y P(Nj,1), s.t., Y N;=N.

1<i<K 1<i<K

(12)

IFor simplicity, here we assume the costs of set and reset are equal. This as-
sumption only lowers our encoding benefits since our method can take advan-
tage of the asymmetry between set and reset costs.

60 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 5, NO. 1, MARCH 2015

Thus, we can write the time ratio for the general P(N, K)
problem compared to the no-coding scheme as

(1)
i<k (% (l = Sf | Nillsnite + Tou(Ni)

NTwrite (13)
and the energy ratio as
(%)
Dici<K (% (1 — %) N; Eyrite + Eov(Ni)>
(14)

NEwrite

In Section X-B we provide numerical values to better demon-
strate the low overhead of our encoding method in terms of time,
energy, and memory.

X. EVALUATION RESULTS

We perform system level evaluations of our methods on a va-
riety of real world data sets. The effect of different word widths,
different set and reset costs, and the memory overhead on the ef-
ficiency of our method are examined.

A. ILP Results

We used the latest version of Gurobi ILP solver [3]. Gurobi
provides free access for academic purposes. The runtime of the
solver for solving (4, 2) is about 30 h on a computer with an
Intel dual core 2.80 GHz processor and 4 GB RAM. Due to the
constraint of the academic version, we did not attempt to solve
the objective function for larger problems. The python ILP code
is available upon request to the interested readers. The advan-
tage of the ILP method is that it provides optimal coding. Since
defining the codes is an offline one-time process, it is feasible to
employ more powerful supercomputing systems with full ILP
version to run our solution for bigger code sizes.

B. Performance of DP-Based Algorithm on Uniform Data

The area overhead of a PN, K') problem (other than the area
of the encoder module) is K/N. Using (7), the endurance in
terms of average flip-per-bit is

Nty
Dz |1 SR | Vi
N (15)

Based on (13), (14), and (15) which provide the overall ef-
ficiency of our method in terms of time, energy and endurance
and also the PCM and encoder module specifications provided
in Section IX, we can find the numerical values for performance
in terms of time, energy, and area, Table IV.

Using the provided formulas for estimating the overhead and
efficiency, one can generate Table IV for many pairs of (N,K)
and choose the best encoding method that fits to their design
goals. Note that the time improvement due to the reduction in
the number of bit-flips almost offsets the time overhead of the
encoder.

1) Performance Comparison With Other Encoding Methods:
We analyze dynamic programming based encoding method in

TABLE IV
PERFORMANCE IMPROVEMENT AS A RESULT OF OUR ENCODING, THE
ENCODING PROCESS OVERHEAD, AND THE NET IMPROVEMENT IN TERMS OF
ENERGY, TIME, ENDURANCE, AND AREA. ALL VALUES ARE NORMALIZED TO
THE BASELINE NO-ENCODING SCHEME (%)

(N,K) Q2,1 | G| &) 7.1 (7.2)| (14,2)] (7,3)
. Energy 750 | 687 | 687 | 637 | 687 | 645 | 723
lmprovement
Encoder 187 | 166 | 184 | 166 | 175 | 153 | 17.8
overhead
. Net 563 | 521|503 | 47.1 | 512 | 492 | 545
improvement
. Time 750 | 687 | 687 | 637 | 687 | 645 | 723
lmprovement
Encoder 77.0 | 683 | 642 | 588 | 66.0 | 58.7 | 732
overhead
. Net 20| 04 | 45 | 49 | 27 | 58 | 09
lmprovement
 Endurance 400.0| 319.5 319.5| 275.5| 319.5| 281.7| 361.0
lmprovement
Area overhead=1 5, 51 950 | 200 | 125 | 222 | 125 | 300
N+K
TABLE V

COMPARING THE ASCII DISTRIBUTION-AWARE CODING WITH THE UNIFORM
CODING. COSTS ARE NORMALIZED TO THE NO-CODING SCHEME. ENERGY
COST IS REDUCED BY AN EXTRA 8% IN DISTRIBUTION-AWARE CODING

distribution-aware
81.6

P(7,1)
94.6

P(7,2)
913

P(7,3)
89.3

Coding scheme
Normalized cost (%)

Algorithm 1 for different memory overheads. We compare our
results with DCW and FNW algorithms [13], [38] that are de-
scribed in Section II.

Here, we show the efficiencies for uniform data where all the
word writes occur with the same frequency. Our metric is the
average (per word write) cost for all possible word combination
overwrites.

Fig. 7(a)—(c) shows the energy improvements of our method
and the FNW method over the conventional DCW method for
8-bit, 16-bit, and 32-bit systems, respectively. The lined graph
shows the results of our method and the black circles show the
result of FNW. For example, a 25% memory overhead for a
32-bit system means that 8 extra bits is used for the each code.
The results for FNW system are shown by circles since they
can only take memory overheads of type 1/(N + 1). Thus, in
a 32-bit system, FNW only accept data-overhead sizes of 31-1,
30-2, 28-4, and 24-8.

Our method performs up to 16% better than FNW. There are
two main reasons for the better performance. The first reason is
the ability of our method to accept different overheads. For ex-
ample, our dynamic programming algorithm partitions P (30, 2)
into P(14,1) +P(16, 1) as apposed to the FNW solution that is
2 x P(15,1). Our partition, as we discussed in Section VII de-
livers better efficiency. Note that as the memory overhead in-
creases, our methods become more efficient.

The second reason is our focus on cost-efficient selection
of the codes to overwrite; FNW always flips the data if the
number of bit-flips required to write the original data is more
than half of the word's size. However, considering the asym-
metric cost of set and reset, we do not count the number of
bit-flips; instead, we count the total energy of set and resets as
our metric to choose a code. Note that if for a new technology

MIRHOSEINI et al.: PHASE CHANGE MEMORY WRITE COST MINIMIZATION BY DATA ENCODING

61

35 35 35
R 30t / K30 £30
% 25 % 25 % 25
a o a
g 20 g 20 5 20
s . * 3 ° L 3 - .
e o o R
S 15¢ g 15 L £ 15 ®
£ £ &
2 10t 210 g 10
° 3 z
a —— Our method a 5 —— Our method| | 5 5 —— Our method
E Y o FNW £ o FNW E ° FNW

. s . R " 0 0
00 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35

Memory overhead (%)

(@)

Memory overhead (%)

(b)

Memory overhead (%)

©

Fig. 7. Comparison of our encoding with FNW method in terms of average energy cost for all possible N-bit word overwrites. Values are normalized to those of
DCW scheme. Results are shown for 3 N-bit systems, i.e., 3 P(N, 1) problems. For the same memory overhead, our method can improve the energy cost up to
16% more in comparison with FNW. (a) 8-bit system. (b) 16-bit system. (c) 32-bit system.

the relation between the set and reset energies changes: e.g.,
Ils > Eg, then our coding can be easily modified to handle
such behavior. For example, let us assume that a new word with
codes = (00000000, 11111111) is to overwrite 11110000. Our
method (with the assumption (Er/Eg) > 1) encodes the word
with 00000000 and the overwrite energy consumption would
become 4 x Es. If (Er/FEs) < 1, then our method encodes the
word with 11111111 to reduce the overwrite energy consump-
tion to 4 x Eg.

2) Performance Comparison With the Optimal Coding: We
compare the performance of our dynamic programming-based
algorithm with the optimal bounds (Section V-C). The fol-
lowing table provides the ratio of the overwrite costs in our
scheme compared to the optimal coding cost (for different
coding sizes). The results show the average energy cost for all
possible data overwrites when Er = 2Fg. According to the
table, the performance gap increases with the memory overhead
increment. However, our algorithm results are still close and in
some cases equal to the optimal bound.

(N,K)
Ratio

“4.1)
1.0

“4.2)
1.0

@8.1)
1.0

(8,2)
1.01

(8,3)
1.07

@4
1.11

3) Effect of the Asymmetric Set/Reset Energy Ratios: Here
we look at the effect of different Fr/Fs ratios on the effi-
ciency of our method. Fig. 8 shows the normalized energy costs
for various memory overheads. As the ratio increases, more en-
ergy savings are achieved; for example, for a memory overhead
of 30%, if the cost of a reset is four times the cost of a set
(Er/Eg = 4) the efficiency is 8% more in comparison with
the case where the costs are similar (Er/FEs = 1). The reason
behind this behavior is that the new coding scheme aims to op-
timize the energy consumption by minimizing the overall cost
of the overwrites (including all set and reset operations). When
resets inuce a higher energy cost, the minimization impact will
also be higher.

We always consider memory overheads of up to 33.34% (or
equivalently K's up to N/2). For K > (IN/2), our dynamic pro-
gramming algorithm breaks the P (N, K') problem into at least
one P(1,1). Such coding does not provide any improvements
and only incurs overhead.

1 L
®
8
© 095}
<
(3]
c
o 09}
E I | —Eg=Es
g - - -Eg=2Eg
S 0851 |-k =3e,
—s—Eg=4Eg
O'85 10 15 20 25 30 35

Memory overhead (%)

Fig. 8. Energy cost reduction by data-aware coding. As the gap between ener-
gies of set (Eg) and reset (Er) increases, our encoding achieves more savings
in comparison with the no-encoding scheme.

C. Performance on Audio and Image Data

We use the encoding method for storage of audio and image
data on PCM. Our benchmark data were taken from Columbia
University audio and Caltech Vision image databases, [2] and
[1], respectively. Four audio and four image files were selected.
The audio data are msmnl.wav, msmvl.wav, msspl.wav, and
msmsl.wav and are denoted by al, a2, a3, and ¢4 in and the
image files are dcp-2897.jpg, dcp-2898.jpg, and dcp-2899.jpg,
and dcp-2830.jpg.

We show the normalized average energy cost of overwriting
all the audio files in Fig. 9 and the image files in Fig. 10. There
are 12 possible overwrites for each file type. The costs are shown
for 32-bit codings with various memory overheads with Fr =
2Fg. The cost of applying our coding method and FNW method
are presented. The costs are normalized to the DCW method's
cost. For some memory capacities, FNW cannot be applied and
the in such cases its cost is set to be equal to the DCW cost. i.e.,
100%. As expected, the gap between the performances become
wider as the memory overhead increases. On the benchmark
data sets our method outperforms the FNW method by up to
14% and 16%.

D. Performance of Stochastic Data Coding

We first provide evaluation results for the English alphabet
coding as described in Section VI-B2. Then, we provide coding
and evaluations for the ASCII characters. We used two text

62 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 5, NO. 1, MARCH 2015

100

80r

601

40+

20

Normalized energy costs (%)

0 5 10 15 20 25 30 35
Memory overhead (%)

Fig. 9. Comparison of our method with FNW method in terms of energy costs.
Encoding is done audio data, on a 32-bit system, and Er/FEs = 2.

,\100 .
9
&80
1]
o
5]
3 60f
o)
5]
- 401
o]
N
g 20t
o Ourmethod
b4 0 -FNW
0 5 10 15 25 30 35

Memory overhead (%)

Fig. 10. Comparison of our method with FNW method in terms of energy costs.
Encoding is done image data, on a 32-bit system, and Er/FEg = 2.

benchmarks, the 31 MB textS.xt file from [6], for alphabet (ex-
cluding spaces) evaluations; and the 4.8 MB KJV.txt file from
[4] for ASCII evaluations.

1) Alphabet Letters: We encode the alphabet letters with the
data-aware encoding. Since there are 26 alphabet letters, N =
5; we set K = 1, and Prefix — length = 3. The codes are
of length Prefix — length + N + K = 9. We evaluate the
method on Text8.txt data for different test trials. For each trial,
100 pairs of vectors are created by randomly reading the data
from the text file. Each vector has 1000 letters. We overwrote
the vectors of each pair and computed the average overwrite cost
for Er/Es = 2. The results demonstrate an average of 9.3%
reduction compared to the uniform data coding of P(5, 2).

2) ASCII Characters: According to the frequencies of ASCII
characters from [5], 59% of all the possible rewrites are to/by
one of the first 15 most frequent characters out of the total 127
characters. Thus, we optimize our coding for these characters
by assigning separate prefixes to them.

The first 15 most frequent characters are: space, e, ¢, a, 0, 1,
n, s, h,r,d, 1, u, m, c. We assigned the following 4-it prefixes
to them, respectively: (0000), (0001), (0010), (0100), (1000),
(1001), (1010), (0110), (0111), (1011), (1101). The prefix for
all the other characters is (1111). Since there are 27 ASCII char-
acters, N = 7 and we set £ = 1. Thus, the codes will be of
length 4 + N + K = 12. The encoding method is the same as
described for alphabet letters.

We evaluated the ASCII coding scheme on the KJV.1xt file.
We created 100 pairs of vectors, each of length 1000 from the
file. The first vector in each pair was overwritten by the second
vector. We assumed Er = 2Fg. To compare this method with

100

- 195
- 190
85} , {85

80} , 180

Energy saving (%)
Memory capacity reduction (%)

R 75
3032 40 4850 6064 70

Code length in bits

0 6810 1620

Fig. 11. Energy saving results for the proposed coding for 2-cell PCM. Dashed
line shows the (normalized) average required energy for writing data compared
to no-codeing method. Dotted line shows the capacity of the MLC PCM com-
pared to no-coding method. For example, coding a 30-bit word with 32-bit codes
results in 0.78 reduction in energy while it reduces the memory capacity by
1 - (30/32) = .07.

the uniform coding, we encoded the ASCII characters with the
codes from P(7,1), P(7,2), and P(7,3) and report the corre-
sponding average costs in the following.

We see that the ASCII data-aware coding, on average, reduces
the energy cost more than the best uniform data coding. For
overwriting each ASCII character, the energy cost is reduced
by almost 8% in data-aware coding compared to the the uni-
form encoding results. This improvement is at the expense of
assigning two extra code bits per character.

E. Performance of Multi-Level Cell Coding

Fig. 11 shows the result of our Multi-Level cell coding. The
average energy reduction of the coded data for different code
widths compared to the noncoded data is shown. Each N-cell
word is coded with NV +1-cell codes. Thus the overhead for such
codes is 1 /(N +1). The figure also shows the memory capacity
usage of the coded data. It can be seen there is a tradeoff between
the energy reduction and the capacity usage. The reductions are
significant even for a small capacity losses. For example, the
16-cell codes incur only a 7% memory overhead in comparison
with the no coding scheme but they reduce the write energy by
22%.

XI. CONCLUSION

We propose a novel data coding methodology for minimizing
the write cost of PCM. Our approach improves both energy con-
sumption and endurance of PCM. It flexibly enables trading off
memory capacity with performance gain. The new data is en-
coded such that overwriting on the existing data incurs min-
imum cost. To address the coding problem, we develop 1) an
ILP-based solution with a high combinational complexity that
finds the codes optimally; 2) a dynamic programming-based ap-
proach that combines the smaller optimal codes to find near-op-
timal codes; and 3) an independent coding approach for multi-
level cell PCM that reduces the number of costly intermediate
level transitions to improve the performance. For cases where
the distribution of the is a priori known, we create a new data-
aware algorithm that incorporates those information for further
optimizations. We also propose a low overhead encoder module.

MIRHOSEINI et al.: PHASE CHANGE MEMORY WRITE COST MINIMIZATION BY DATA ENCODING 63

Evaluations on a diverse set of text, image, and audio bench-
mark data demonstrate the applicability and effectiveness of our
new methods. Our codings result in up to 16% energy improve-
ment over the existing techniques for the single-level cell PCM
and 22% improvement for multi-level cell PCM.

REFERENCES

[1] Caltech Computational Vision Data Repository [Online]. Available:
http://www.vision\\.caltech.edu/html-files/archive.html

[2] Columbia University Sound Examples Repository [Online]. Available:
http://labrosa.ee\\.columbia.edu/sounds

[3] Gurobi ILP Solver [Online]. Available: http://www.gurobi.com/

[4] The King James Bible (KJV) [Online]. Available: http://patriot.net/bm-
cgin/kjvpage.html

[5] Letter Frequency Counter [Online]. Available: http:/millikeys.source-
forge.net/freqanalysis.html

[6] Text File Test Data [Online]. Available: http://mattmahoney.net/dc/
textdata/

[7] T. Gonzalez, “Clustering to minimize the maximum intercluster dis-
tance,” Theor. Comput. Sci., vol. 38, pp. 293-306, 1985.

[8] R. Ahlswede and Z. Zhang, “Coding for write-efficient memory,” Inf.
Comput., vol. 83, no. 1, pp. 80-97, 1989.

[9] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, and S.
Dwarkadas, “Memory hierarchy reconfiguration for energy and per-
formance in general-purpose processor architectures,” in Proc. Int.
Symp. Microarchit., 2000, pp. 245-257.

[10] F. Bedeschi et al., “4-Mb MOSFET-selected ptrench phase-change
memory experimental chip,” IEEE J. Solid-State Circuits, vol. 40, no.
7, pp. 1557-1565, Jul. 2005.

[11] F.Bedeschi et al., “A bipolar-selected phase change memory featuring
multi-level cell storage,” IEEE J. Solid-State Circuits, vol. 44, no. 1,
pp. 217-227, Jan. 2009.

[12] S. Braga, A. Sanasi, A. Cabrini, and G. Torelli, “Voltage-driven par-
tial-reset multilevel programming in phase-change memories,” /[EEE
Trans. Electron Devices, vol. 57, no. 10, pp. 2556-2563, Oct. 2010.

[13] S. Cho and H. Lee, “Flip-N-Write: A simple deterministic technique to
improve PRAM write performance, energy and endurance,” in Proc.
Int. Symp. Microarchit., 2009, pp. 347-357.

[14] G. Dhiman, R. Ayoub, and T. Rosing, “PDRAM: A hybrid PRAM and
DRAM main memory system,” in Design Automat. Conf., 2009, pp.
664-669.

[15] A. Fiat and A. Shamir, “Generalized 'write-once' memories,” IEEE
Trans. Inf. Theory, vol. 30, no. 3, pp. 470-480, May 1984.

[16] F.-W.Fuand R. Yeung, “On the capacity and error-correcting codes of
write-efficient memories,” IEEE Trans. Inf. Theory, vol. 46, no. 7, pp.
2299-2314, Nov. 2000.

[17] H. Hajimiri, P. Mishra, S. Bhunia, B. Long, Y. Li, and R. Jha, “Con-
tent-aware encoding for improving energy efficiency in multi-level
cell resistive random access memory,” in Proc. [IEEE/ACM Int. Symp.
Nanoscale Archit., 2013, pp. 76-81.

[18] A. Jiang, M. Langberg, M. Schwartz, and J. Bruck, “Universal
rewriting in constrained memories,” in Int. Symp. Inf. Theory, 2009,
pp. 1219-1223.

[19] M. Joshi, W. Zhang, and T. Li, “Mercury: A fast and energy-efficient
multi-level cell based phase change memory system,” in Proc. [EEE
Int. Symp. High Performance Comput. Archit., 2011, pp. 345-356.

[20] I. Kim et al., “High performance pram cell scalable to sub-20 nm tech-
nology with below 4f2 cell size, extendable to dram applications,” in
Symp. VLSI Technol., 2010, pp. 203-204.

[21] B. Lee, P. Zhou, J. Yang, Y. Zhang, B. Zhao, E. Ipek, O. Mutlu, and
D. Burger, “Phase-change technology and the future of main memory,”
IEEFE Micro, vol. 30, no. 1, p. 143, Jan./Feb. 2010.

[22] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase
change memory as a scalable dram alternative,” in Int. Proc. Symp.
Comput. Archit., 2009, pp. 2—-13.

[23] K. Lee ef al., “A 90 nm 1.8 v 512 mb diode-switch pram with 266
mb/s read throughput,” in Proc. IEEE Int. Solid-State Circuits Conf.
Dig. Tech. Papers, 2007, pp. 472-616.

[24] H. Mahdavifar, P. Siegel, A. Vardy, J. Wolf, and E. Yaakobi, “A nearly
optimal construction of flash codes,” in Proc. Int. Symp. Inf. Theory,
2009, pp. 1239-1243.

[25] A. Mirhoseini, M. Potkonjak, and F. Koushanfar, “Coding-based en-
ergy minimization for phase change memory,” in Proc. Design Au-
tomat. Conf., 2012, pp. 68-76.

[26] T. Mittelholzer, L. Lastras-Montaando, M. Sharma, and M. Frances-
chini, “Rewritable storage channels with limited number of rewrite it-
erations,” in Proc. Int. Symp. Inf. Theory, 2010, pp. 973-977.

[27] N. Papandreou et al., “Drift-tolerant multilevel phase-change
memory,” in Proc. IEEE Int. Memory Workshop, 2011, pp. 1-4.

[28] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras,
and B. Abali, “Enhancing lifetime and security of PCM-based main
memory with start-gap wear leveling,” in Proc. Int. Symp. Microarchit.,
2009, pp. 14-23.

[29] S. Raoux et al., “Phase-change random access memory: A scalable
technology,” IBM J. Res. Develop., vol. 52,n0.4-5, pp. 465-479,2008.

[30] R. L. Rivest and A. Shamir, “How to reuse a write—Once memory
(preliminary version),” in Symp. Theory Comput., 1982, pp. 105-113.

[31] S. Schechter, G. H. Loh, K. Straus, and D. Burger, “Use ECP, not ECC,
for hard failures in resistive memories,” in Proc. Int. Symp. Comput.
Archit., 2010, pp. 141-152.

[32] C. Sie, “Memory devices using bistable resistivity in amorphous
As-Te-Ge films,” Ph.D. dissertation, lowa State Univ., Ames, IA,
1969.

[33] J. Wang, X. Dong, G. Sun, D. Niu, and Y. Xie, “Energy-efficient multi-
level cell phase-change memory system with data encoding,” in /EEE
Int. Conf. Comput. Design, 2011, pp. 175-182.

[34] H. Wong et al., “Phase change memory,” Proc. IEEE, vol. 98, no. 12,
pp. 22012227, Dec. 2010.

[35] X. Wu, J. Li, L. Zhang, E. Speight, R. Rajamony, and Y. Xie, “Design
exploration of hybrid caches with disparate memory technologies,”
ACM Trans. Archit. Code Optimizat., vol. 7, pp. 1501-1534, 2010.

[36] Y. Wu and A. Jiang, “Position modulation code for rewriting
write-once memories,” IEEE Trans. Inf. Theory, vol. 57, no. 6, pp.
3692-3697, Jun. 2011.

[37] W.Xuand T. Zhang, “Using time-aware memory sensing to address re-
sistance drift issue in multi-level phase change memory,” in Int. Symp.
Qual. Electron. Design, 2010, pp. 356-361.

[38] B.-D. Yang, J.-E. Lee, J.-S. Kim, J. Cho, S.-Y. Lee, and B.-G. Yu, “A
low power phase-change random access memory using a data-compar-
ison write scheme,” in Proc. IEEE Int. Symp. Circuits Syst., 2007, pp.
3014-3017.

[39] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy effi-
cient main memory using phase change memory technology,” in Proc.
Int. Symp. Comput. Archit., 2009, pp. 14-23.

Azalia Mirhoseini (S’12) is currently pursuing the
Ph.D. degree in electrical and computer engineering
at Rice University, Houston, TX, USA.

Her research interests include various aspects of
machine learning, optimization, signal processing,
and their applications to big data and emerging
technologies.

Ms. Mirhoseini is the recipient of National Gold
Medal in Iran Mathematics Olympiad (2004),
Microsoft Women Graduate Student Scholarship
(2010), IBM Ph.D. Student Scholarship (2012), and
Schlumberger Ph.D. Student Fellowship (2013).

Miodrag Potkonjak (M’03) received the Ph.D. degree in electrical engineering
and computer science from University of California, Berkeley, CA, USA, in
1991.

He is a Professor with Computer Science Department at the University
of California, Los Angeles, CA, USA. He created first watermarking, finger-
printing, and metering techniques for integrated circuits as well as first remote
trusted sensing and trusted synthesis approaches, compilation using untrusted
tools, and public physical unclonable functions.

Farinaz Koushanfar (SM’13) received the Ph.D.
degree in electrical engineering and computer
science and the M.A. degree in statistics from the
University of California, Berkeley, CA, USA, in
2005.

She is currently an Associate Professor with the
Department of Electrical and Computer Engineering,
Rice University, Houston, TX, USA. Her research
interests include adaptive and low power embedded
systems design, hardware security, and design
intellectual property protection.

Dr. Koushanfar is a recipient of several awards and honors, including the
Presidential Early Career Award for Scientists and Engineers, the ACM SIGDA
Outstanding New Faculty Award, the NAS Kavli Foundation Fellowship, and
the Young Faculty (or CAREER) Awards from the Army Research Office
(ARO), Office of Naval Research (ONR), Defense Advanced Research Projects
Agency (DARPA), and National Science Foundation (NSF).

