
Appeared in ICML 2019, 6th Workshop on Automated Machine Learning

ASCAI: Adaptive Sampling for acquiring Compact AI
Mojan Javaheripi and Mohammad Samragh and Tara Javidi and Farinaz Koushanfar

Department of Electrical and Computer Engineering, UC San Diego, USA
{mojan, msamragh, tjavidi, farinaz}@ucsd.edu

Abstract
This paper introduces ASCAI, a novel adaptive sampling methodology that can learn how to effec-
tively compress Deep Neural Networks (DNNs) for accelerated inference on resource-constrained
platforms. Modern DNN compression techniques comprise various hyperparameters that require
per-layer customization to ensure high accuracy. Choosing such hyperparameters is cumbersome
as the pertinent search space grows exponentially with the number of model layers. To effectively
traverse this large space, we devise an intelligent sampling mechanism that adapts the sampling
strategy using customized operations inspired by genetic algorithms. As a special case, we con-
sider the space of model compression as a vector space. The adaptively selected samples enable
ASCAI to automatically learn how to tune per-layer compression hyperparameters to optimize the
accuracy/model-size trade-off. Our extensive evaluations show that ASCAI outperforms rule-based
and reinforcement learning methods in terms of compression rate and/or accuracy.

1. Introduction
With the growing range of applications for Deep Neural Networks (DNNs) on embed-
ded platforms, various DNN compression techniques have been developed to enable ex-
ecution of such models on resource-limited devices. Some examples of DNN com-
pression methods include pruning [Lin et al. (2018)], quantization [Zhou et al. (2016b);
Ghasemzadeh et al. (2018)], nonlinear encoding [Han et al. (2015); Samragh et al.
(2019b, 2017)], and tensor decomposition [Kim et al. (2015); Samragh et al. (2019a)].

Figure 1: Accuracy/FLOPs Pareto fron-
tiers for pruning a pre-trained VGG net-
work on CIFAR-10. Our intelligent pol-
icy achieves a better Pareto curve com-
pared to rule-based (uniform) pruning.

Compression techniques require tailoring for each DNN
architecture, which is generally realized by tuning certain
hyperparameters at each layer. Fig. 1 illustrates the im-
portance of intelligent hyperparameter selection for the
example of pruning. In general, finding optimal hyper-
parameters is quite challenging as the space of possibili-
ties grows exponentially with the number of DNN layers.
Such large search-space renders manual or computerized
greedy hyperparameter tuning algorithms sub-optimal or
infeasible. Heuristics that compress one layer at a time
overlook the existing inter-dependencies among layers.
As such, an intelligent policy that globally tunes the per-
tinent hyperparameters for all layers is highly desired.

In this paper, we propose ASCAI, an adaptive sampling methodology that automates hyperpa-
rameter selection for DNN compression. Genetic algorithms are leveraged to iteratively adapt the
sampling strategy. We devise a customized translator that encodes each compressed DNN as a
fixed-length sample (vector) of the space, called an individual. We then adaptively sample from the
pertinent vector space with the goal of finding individuals that render higher compression rate and
inference accuracy. Our algorithm initializes a random population of individuals and iteratively
evolves them towards higher quality generations. To assess the quality of individuals, we develop a
scoring mechanism that captures the trade-off between model accuracy and computational complex-
ity. ASCAI evolution aims to encourage survival of individuals with high scores and elimination of
the weak ones. Towards this goal, each evolution iteration is modeled by a set of consecutive genetic
operations. First, individuals with high scores are selected to generate a new population (evaluation
and selection). Next, the chosen individuals are combined and perturbed to produce children of
similar quality (crossover and mutation). The same procedure continues until convergence.

1

ar
X

iv
:1

91
1.

06
47

1v
1 

 [
cs

.L
G

] 
 1

5 
N

ov
 2

01
9



2. Background and Related Work
Preliminaries and Key Insights. Recent research showcase the superiority of genetic algorithms
to other exploration methods (e.g., reinforcement learning and random search) for large search-
spaces [Xie and Yuille (2017)] due to their intriguing characteristics: (1) Genetic algorithms are
inexpensive to implement as they do not rely on backpropagation. (2) They are highly parallelizable.
(3) Genetic algorithms support a variety of scores and do not suffer in settings with sparse/discrete
rewards [Such et al. (2017)]. (4) Finally, these methods can adopt multiple DNN compression tasks.

...

Selection

+ ,

Parent 1, 2 Offspring

Cross-over Mutation

Tweak...

Evaluation

Score: 0.010.2 0.55

Figure 2: Operations of genetic algorithms.

A genetic algorithm works on a generation of in-
dividuals. The core idea is to encourage creation
of superior individuals and elimination of the infe-
rior ones. To this end, an iterative process (Fig. 2)
evolves the previous generation into a new, more
competent population by performing a set of bio-
inspired actions, i.e., selection, crossover, and muta-
tion. During evaluation, individuals are assigned scores representing their quality (fitness). The se-
lection step performs a sampling (with replacement) based on individuals’ fitness scores. Crossover
and mutation create new individuals from existing ones.
Related Work. In the context of deep learning, genetic algorithms have been applied to Neural
Architecture Search (NAS) [Xie and Yuille (2017); Real et al. (2017); Huang and Wang (2018)],
where the goal is to build a neural network architecture. The objective of NAS is generally achieving
higher inference accuracy with no or little emphasis on the execution cost. Different from NAS, this
paper focuses on learning hyperparameters for DNN customization, which simultaneously targets
execution cost and inference accuracy. Network compression has been studied in contemporary
research [He et al. (2018a, 2017); Wang et al. (2017); Jiang et al. (2018); Li et al. (2016); Lin
et al. (2017, 2018); Luo et al. (2017)]. These algorithms aim at eliminating redundancies from
pre-trained network architectures to reduce computational complexity while preserving inference
accuracy. Reinforcement Learning (RL) is proposed as an automated tool that searches for improved
model compression quality [He et al. (2018b)]. Although effective in finding near-optimal solutions,
RL relies on gradient-based training, which can lead to a high computational burden and a slow
convergence. [Hu et al. (2018)] develop a novel pruning scheme that selects the pruned filters using
genetic algorithms rather than magnitude-based or gradient-based approaches. Our work is different
in that we aim to learn compression hyperparameters rather than the compression technique itself.
As a result, ASCAI can be applied to generalized compression techniques.
3. ASCAI Approach
An overview of ASCAI methodology is shown in Fig. 3. A translation scheme represents each
customized DNN using a vector of per-layer hyperparameters (Sec. 3.1). The initial population is
established using a random sampling scheme (Sec. 3.2). At each iteration, the evaluation, selection,
crossover, and mutation operations (Sec. 3.3) are performed to update the population towards a
new generation. By iteratively applying these operations, ASCAI finds near-optimal compression
hyperparameters for a desired DNN. The rest of this section provides details on the search algorithm.

Validation
Accuracy

...

Population

Cross-over MutateSelectEvaluate

D
ec

o
d

e

Model 
Size Next Generation

Compressed 
DNN

Genetic Algorithm

Figure 3: ASCAI solution for DNN customization.

2



3.1 Genetic Translation

Although our proposed approach is applicable to various DNN compression techniques, in this
paper we direct our focus on four compression tasks: structured and non-structured Pruning [Li
et al. (2016); He et al. (2017)], Singular Value Decomposition [Zhou et al. (2016a)], and Tucker-2
approximation [Kim et al. (2015)]. To construct the individual vectors for our genetic algorithm, we
append per-layer hyperparameters as described in the following.
Pruning. We allocate a continuous value p ∈ [0, 1] for each layer to represent the ratio of pruned
values. For an L-layer DNN, each individual would be a vector v ∈ RL with elements vi ∈ [0, 1].
SVD. We apply SVD on weight parameters (W ) of fully-connected layers (W ∈ Rm×n) and point-
wise convolutions (W ∈ Rm×n×1×1). To represent the approximation rank in each layer, we dis-
cretize the possibilities into 64 values and encode them as follows:

rank ∈ {1← R

64
, 2← 2R

64
, . . . , 64← R}, R = min{m,n}

Tucker-2. Tucker decomposition is a generalized form of low-rank approximation for arbitrary-
shaped tensors. We apply this method to 4-way weights in convolutional layers, W ∈ Rm×n×k×k.
We focus on Tucker-2 which only decomposes the tensor along m and n directions, i.e., output and
input channels. For each layer, a tuple of approximation ranks (rankm, rankn) should be provided.
We quantize the space of decomposition ranks to 8 bins per-way as follows:

rankm ∈{1←
m

8
, 2← 2m

8
, . . . , 8← m}, rankn ∈ {1← n

8
, 2← 2n

8
, . . . , 8← n}

When applying low-rank approximation, for a DNN that has a total of L1 fully connected and point-
wise convolutions (1×1 filters) andL2 regular convolution layers (k×k filters), the individual would
be a vector of length L1 + 2L2 that represent the encoded ranks described above.

3.2 Warm Initialization
A naı̈ve initialization of individuals can result in a slow and sub-optimal convergence. To address
this, we utilize warm population initialization to reduce search time by eliminating unnecessary ex-
ploration of low-score regions, i.e., regions at which the inference accuracy is low. Let us denote an
individual vector as v ∈ RL, the validation dataset as D = {(xm, ym)}Mm=1, and the corresponding
classification accuracy as accD|v. During initialization, we only accept randomly sampled (i.i.d.)
individuals that satisfy an accuracy threshold: accD|v > accthr. To this end, we find a threshold
vector θ that specifies the maximum per-layer compression when all other layers are uncompressed.
Below we explain how to obtain θ for continuous and discrete hyperparameters.
Pruning. We obtain a threshold vector θ ∈ RL with the i-th element θi specifying the maximum
pruning rate for the i-th layer such that the accuracy threshold accthr is not violated:

θi = max{p} s.t. vj =

{
p j = i

0 j 6= i
& accD|v > accthr (1)

For each individual v, the i-th element vi is sampled from a Normal distribution N (θi/2, θi/2).
Decomposition. The threshold vector θ represents per-layer minimum ranks that satisfy accthr:

θi = min{rank} s.t. vj =

{
rank j = i

rankmax j 6= i
& accD|v > accthr (2)

where rankmax corresponds to the non-decomposed layer parameters (see Sec. 3.1). Once θ is
obtained, we uniformly sample vi from integers {θi, θi + 1, . . . }.

3



3.3 Genetic Operations

To enable efficient exploration of the underlying search-space, we devise customized genetic oper-
ations, namely, evaluation, selection, crossover, and mutation. Below we describe each step.

Evaluation. To assess a population of individuals, we first decode them to their corresponding
compressed DNN architectures; this is done by applying compression to each layer of the original
DNN based on the corresponding hyperparameter in the individual. We develop a customized scor-
ing mechanism that reflects the acquired model’s accuracy and compression rate. Given validation
dataset, D = {(xm, ym)}Mm=1, the score of individual v evaluated on dataset D is:

score(v,D) =
∆FLOPS (v)

PEN acc(D|v)
(3)

The numerator encourages reduction in model FLOPs while the denominator penalizes the decrease
in model accuracy caused by compression. Here, ∆FLOPS (v) represents the difference in FLOPS
between the uncompressed DNN and the compressed model after applying v. PEN acc(D|v) is a
measure for accuracy degradation:

PEN acc(D|v) = accD|o − accD|v + T (accD|v < accthr)× eaccthr−accD|v (4)

where accD|o is the validation accuracy of the original (uncompressed) model, accD|v is the accu-
racy after applying compression with v, and T (.) returns the Boolean assessment of the provided
inequality. To prevent undesirable drop of accuracy, we greatly diminish the score of individuals
that cause lower accuracies than the set constraint, accthr; Having an accuracy constraint is crucial
since the genetic algorithm will converge to a model size of zero otherwise. To ensure efficiency,
we only use a small portion of the training samples as validation data.

Selection. The selection stage in genetic algorithms attempts to choose high-quality individuals
to generate the next population. Let us denote the population at the beginning of t-th iteration
by Pt = {vtn}Nn=1 with fitness scores {sn}Nn=1 obtained from Eq. 3. Following [Xie and Yuille
(2017)], we normalize the scores as sn ← sn−smin∑N

n=1(sn−smin)
, where smin is the minimum score in

current population. Subtraction of the minimum score ensures that the probability of selecting the
weakest individual is zero. The new population, Pt+1 = {vt+1

n }Nn=1, is generated by non-uniform
random sampling (with replacement) from the old population, Pt. In this non-uniform sampling,
the probability of selecting an individual, vtn, is proportional to its score. This method eliminates
weak individuals and passes the high-quality ones to the next generation.

Crossover. Given a selected population Pt+1, crossover generates two offsprings by operating on

each pair of adjacent parent individuals {vt+1
2k−1, v

t+1
2k }

N
2
k=1. We use two parameters to control the

degree of crossover operation: pcross determines the probability of applying crossover between
two individuals, and pswap is the per-element swapping probability. Crossover allows superior
individuals to exchange their learned patterns and enables knowledge transfer across the population.

Mutation. Mutation randomly tweaks each individual in the population. Similar to crossover, we
define two control parameters: pmutate is the probability that the individual gets mutated and ptweak

determines the per-element tweaking probability. Mutation allows exploration of the neighborhood
of candidate points in the search-space. Each element of a continuous-valued individual is mutated
by adding a random value drawn from a zero-mean Normal distributionN (0, 0.2). Discrete-valued
individuals are mutated by randomly incrementing or decrementing vector elements. The values are
clipped to the valid ranges after mutation.

4



4. Experiments

We provide extensive evaluations on CIFAR-10 and ImageNet benchmarks. The baseline networks
are trained from scratch using PyTorch library. We conduct experiments with non-structured prun-
ing (Pn), structured pruning (Ps), decomposition (D), and combination of multiple compression
methods (D + Ps). Tab. 1 summarizes the results of ASCAI compressed networks and compares
them with prior work that utilize pruning as the compression technique. For brevity, we compare
ASCAI with best existing works and exclude other related works.

Table 1: Comparison of ASCAI with state-of-the-art compression methods, namely CP [He et al.
(2017)], AMC [He et al. (2018b)], SFP [He et al. (2018a)], FP [Li et al. (2016)], SSS [Wang et al.
(2017)], GDP [Lin et al. (2018)], ThiNet [Luo et al. (2017)], and RNP [Lin et al. (2017)]. For
ImageNet, we follow common practice in prior work and compare our top-5 accuracy with them.

Non-structured Pruning (Pn in Tab. 1). We perform non-structured pruning on ResNet-50 trained
on CIFAR-10. We prune the parameters with lowest absolute value as in AMC [Han et al. (2015)],
the state-of-the-art that utilizes RL for automated DNN compression. Similar to AMC, we do not
perform fine-tuning on the compressed model in this experiment. As shown, ASCAI achieves better
accuracy with 1.33× lower parameters.
Structured Pruning (Ps in Tab. 1). We implement structured pruning by adding masks afterReLU
activation layers. Following [Molchanov et al. (2016)], we prune the activations in each layer based
on the sum of absolute gradients at the ReLU output. We base our comparisons on the number
of operations per inference, i.e., FLOPs, compared to the uncompressed baseline. On CIFAR-10
networks, ASCAI achieves on average 1.25× lower FLOPs, while achieving similar classification
accuracy compared to prior art. On VGG-16, ASCAI outperforms all heuristic methods and gives
competing results with AMC [He et al. (2018b)].
Decomposition and Pruning (D + Ps in Tab. 1). To unveil the full potential of our method, we
allow ASCAI to learn and combine multiple compression techniques, namely, structures pruning,
SVD, and Tucker decomposition. We also report the FLOPs reduction achieved by decomposition
separately (shown by D in Tab. 1). Combining multiple techniques allows ASCAI to push the
limits of compression. On VGG-16, ASCAI pushes the state-of-the-art FLOPs reduction from 5×
to 7.2× with 0.3% higher accuracy.

5



4.1 Analysis and Discussion

To illustrate ASCAI methodology, we consider VGG architecture trained on ImageNet and com-
pressed with structured (filter) pruning. The population is visualized at the initial step (Fig. 4-a) and
after 50 iterations of genetic updating (Fig 4-b). Upon convergence, individuals strongly resem-
ble one another and have similarly high scores. ASCAI successfully learns expert-designed rules:
first and last rows in Fig. 4-b (first convolution and last fully-connected) are given high densities to
maintain inference accuracy. ASCAI performs whole-network compression by capturing the state
of all layers in each genetic individual. As such, our algorithm can learn which configuration of
hyperparameters least affects model accuracy and most reduces the overall FLOPs. To show this
capability, we present the per-layer FLOPs for VGG-16 network trained on ImageNet in Fig. 4-c.
The bar for each layer shows the percentage of total FLOPs in the original model; the curve shows
the percentage of pruned FLOPs in the compressed network. Different from prior art [Jiang et al.
(2018)], ASCAI prunes the first convolutions more and relaxes pruning for late convolution and
fully-connected layers as they have a minor role in FLOPs.

Figure 4: (a) Initialized population for structured pruning. (b) Population upon convergence. Here,
each row corresponds to a DNN layer and each column denotes an individual in the population.
(c) Per-layer FLOPs (bar charts) and percentage of pruned FLOPs (curve).
4.2 Ablation Study

Figure 5: (a) Effect of initializa-
tion. (b) Effect of population size.

In this section, we study the effect of ASCAI components on
algorithm convergence and final FLOPs/accuracy. For brevity,
we only focus on structured pruning for CIFAR-10. We show
the trend lines as well as a fraction of individuals (black dots)
across ASCAI iterations.
Effect of Initialization. Fig. 5-a shows the evolution of
FLOPs ratio for two initialization policies, one with uni-
formly random samples and one with our proposed initializa-
tion scheme discussed in Sec. 3.2. As seen, naive initialization
greatly harms the convergence rate and final FLOPs.
Effect of Population Size. Fig. 5-b presents the effect of pop-
ulation size on ASCAI convergence. A higher number of in-
dividuals results in a smoother convergence and lower final
FLOPs. This effect saturates for a large enough population.

5. Conclusion

This paper introduces ASCAI, a method to automate DNN compression using adaptive sampling
with genetic algorithms. Our algorithm learns how the compression hyperparameters should be set
across layers to achieve a better performance than models designed by human experts. The core idea
behind ASCAI is to translate compression hyperparameters into a vector of genes and explore the
corresponding search-space using genetic operations. This approach allows ASCAI to be generic
and applicable to any combination of post-processing DNN compression methods.

6



References

Mohammad Ghasemzadeh, Mohammad Samragh, and Farinaz Koushanfar. Rebnet: Residual
binarized neural network. In 2018 IEEE 26th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), pages 57–64. IEEE, 2018.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. Soft filter pruning for accelerat-
ing deep convolutional neural networks. arXiv preprint arXiv:1808.06866, 2018a.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural net-
works. In International Conference on Computer Vision (ICCV), volume 2, 2017.

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. Amc: Automl for model
compression and acceleration on mobile devices. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 784–800, 2018b.

Yiming Hu, Siyang Sun, Jianquan Li, Xingang Wang, and Qingyi Gu. A novel channel pruning
method for deep neural network compression. arXiv preprint arXiv:1805.11394, 2018.

Zehao Huang and Naiyan Wang. Data-driven sparse structure selection for deep neural networks.
In Proceedings of the European Conference on Computer Vision (ECCV), pages 304–320, 2018.

Chunhui Jiang, Guiying Li, Chao Qian, and Ke Tang. Efficient dnn neuron pruning by minimizing
layer-wise nonlinear reconstruction error. In IJCAI, pages 2–2, 2018.

Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and Dongjun Shin. Com-
pression of deep convolutional neural networks for fast and low power mobile applications. arXiv
preprint arXiv:1511.06530, 2015.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. Runtime neural pruning. In Advances in Neural
Information Processing Systems, pages 2181–2191, 2017.

Shaohui Lin, Rongrong Ji, Yuchao Li, Yongjian Wu, Feiyue Huang, and Baochang Zhang. Accel-
erating convolutional networks via global & dynamic filter pruning. In IJCAI, pages 2425–2432,
2018.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural
network compression. In Proceedings of the IEEE international conference on computer vision,
pages 5058–5066, 2017.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient transfer learning. arXiv preprint arXiv:1611.06440, 3,
2016.

Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu, Jie Tan,
Quoc V Le, and Alexey Kurakin. Large-scale evolution of image classifiers. In Proceedings
of the 34th International Conference on Machine Learning-Volume 70, pages 2902–2911. JMLR.
org, 2017.

7



Mohammad Samragh, Mohammad Ghasemzadeh, and Farinaz Koushanfar. Customizing neural net-
works for efficient fpga implementation. In Field-Programmable Custom Computing Machines
(FCCM), 2017 IEEE 25th Annual International Symposium on, pages 85–92. IEEE, 2017.

Mohammad Samragh, Mojan Javaheripi, and Farinaz Koushanfar. Autorank: Automated rank se-
lection for effective neural network customization. ML-for-Systems workshop at the 46th Inter-
national Symposium on Computer Architecture (ISCA), 2019a.

Mohammad Samragh, Mojan Javaheripi, and Farinaz Koushanfar. Codex: Bit-flexible encoding for
streaming-based fpga acceleration of dnns. arXiv preprint arXiv:1901.05582, 2019b.

Felipe Petroski Such, Vashisht Madhavan, Edoardo Conti, Joel Lehman, Kenneth O Stanley, and
Jeff Clune. Deep neuroevolution: Genetic algorithms are a competitive alternative for training
deep neural networks for reinforcement learning. arXiv preprint arXiv:1712.06567, 2017.

Huan Wang, Qiming Zhang, Yuehai Wang, and Haoji Hu. Structured probabilistic pruning for
convolutional neural network acceleration. arXiv preprint arXiv:1709.06994, 2017.

Lingxi Xie and Alan Yuille. Genetic cnn. arXiv preprint arXiv:1703.01513, 2017.

Hao Zhou, Jose M Alvarez, and Fatih Porikli. Less is more: Towards compact cnns. In European
Conference on Computer Vision, pages 662–677. Springer, 2016a.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net: Train-
ing low bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160, 2016b.

8


	1 Introduction
	2 Background and Related Work
	3 ASCAI Approach
	3.1 Genetic Translation
	3.2 Warm Initialization
	3.3 Genetic Operations

	4 Experiments
	4.1 Analysis and Discussion
	4.2 Ablation Study

	5 Conclusion

