
ARM2GC: Succinct Garbled Processor for Secure Computation

Ebrahim M. Songhori
esonghori@google.com

Google Inc.

M. Sadegh Riazi
mriazi@ucsd.edu
UC San Diego

Siam U. Hussain
siamumar@ucsd.edu

UC San Diego

Ahmad-Reza Sadeghi
ahmad.sadeghi@trust.tu-darmstadt.de

TU Darmstadt

Farinaz Koushanfar
farinaz@ucsd.edu
UC San Diego

ABSTRACT
We present ARM2GC 1, a novel secure computation framework
based on Yao’s Garbled Circuit (GC) protocol and the ARM pro-
cessor. It allows users to develop privacy-preserving applications
using standard high-level programming languages (e.g., C) and
compile them using off-the-shelf ARM compilers (e.g., gcc-arm).
The main enabler of this framework is the introduction of Skip-
Gate, an algorithm that dynamically omits the communication
and encryption cost of the gates whose outputs are independent
of the private data. SkipGate greatly enhances the performance
of ARM2GC by omitting costs of the gates associated with the
instructions of the compiled binary, which is known by both par-
ties involved in the computation. Our evaluation on benchmark
functions demonstrates that ARM2GC not only outperforms the
current GC frameworks that support high-level languages, it also
achieves efficiency comparable to the best prior solutions based
on hardware description languages. Moreover, in contrast to pre-
vious high-level frameworks with domain-specific languages and
customized compilers, ARM2GC relies on standard ARM compiler
which is rigorously verified and supports programs written in the
standard syntax.

KEYWORDS
Privacy-Preserving Computation, Yao’s Garbled Circuit, Secure
Processor, ARM

1 INTRODUCTION
Secure Function Evaluation (SFE) allows two or more parties to
compute an arbitrary function on their respective inputs such that
they learn the function’s output without revealing their private
data. The first and one of the most powerful methods for two-party
SFE is the Yao’s Garbled Circuit (GC) protocol proposed by Andrew
Yao in 1986 [45]. Upon arrival, Yao’s protocol immediately attracted
significant attention from the cryptographic community and it
has been the core enabler of many secure and privacy-preserving
applications including but not limited to genomic data analysis [32],
text search [34], and stable matching [35]. The protocol requires
representing the underlying function as a Boolean circuit. It has
been shown that the bottleneck of the GC protocol execution time is
the communication between the two parties [7]. Therefore, the non-
trivial challenge of utilizing GC is to generate the Boolean circuit
such that its secure evaluation requires the minimum inter-party
communication.

1a short version of this paper to appear in Desgin Automation Conference (DAC) 2019

The challenge of the GC circuit optimization is partially ad-
dressed by TinyGarble [39]. This work shows that the GC-optimized
circuit generation can be viewed as an atypical instance of the con-
ventional logic synthesis task. This approach outperforms previous
methods for generating Boolean circuit using custom compilers
or custom libraries [2, 4, 21, 23, 30]. In TinyGarble, however, the
highest efficiency and scalability can only be achieved when the
function is described in a Hardware Description Language (HDL),
e.g., Verilog; while most users prefer to develop their applications
in high-level programming languages, e.g., C.

In order to facilitate the deployment of the secure computa-
tion frameworks, many researchers have designed Domain Specific
Languages (DSL) and/or custom designed compilers for secure
computation [2, 6, 16, 23, 25, 30]. These compilers enable users
to write the program in a high-level language and compile them
into a Boolean/Arithmetic circuit representation such that it can
be evaluated by a secure computation protocol. Despite provid-
ing a user-friendly solution, the DSL and customized compilers
exhibit many limitations compared to the standard high-level lan-
guages (e.g., C/C++). For example, they have specialized complex
syntax, limited built-in data types, and certain rules on the pro-
gramming style. Moreover, these compilers do not support many
of the typical advanced code optimizations due to their customized
design. Last but not the least, the recent analysis by Mood et al. [25]
demonstrates that the current state-of-the-art high-level compilers
for secure computation crashed on programs that were compiled
correctly or generated incorrect compiled programs in some cases.

In this paper, we introduce ARM2GC, a novel garbled processor
that supports developing privacy preserving applications using any
(unmodified) high-level language and an off-the-shelf standard com-
piler (e.g., arm-gcc) without significant performance ramifications.
In a garbled processor [40, 43], the underlying Boolean circuit is
that of a general purpose processor. The compiled binary is loaded
into the processor’s instruction memory and the private data of
the users is loaded into the data memory. Then, the circuit (proces-
sor) is garbled/evaluated through a GC back-end. However, such a
straightforward garbling approach results in a massive overhead
compared to describing the program in HDLs or DSLs. For example,
a single addition operation can be securely computed with a min-
imal number of gates when the task is described in an HDL [39].
Performing the same task using a garbled processor requires gar-
bling/evaluating all of the processor’s components such as control
path, register files, and the entire ALU. Garbling these gates are
not required to ensure privacy since they operate on the compiled
binary of the function which is known to both parties.

1

An earlier work byWang et al. [43] suggested a garbled processor
based on the standard MIPS instructions. It incurred a high over-
head compared with the recent DSL-based solutions. The reason for
this inefficiency can be traced back to its instruction-level pruning
of the processor circuit instead of gate-level optimization. (A more
detailed description of this approach is discussed in Section 6.)
ARM2GC benefits from the first dynamic fine-grained gate-level
optimization on the garbled processor such that only the gates as-
sociated with the private data incur garbling cost. The outputs of
the gates associated with the instructions of the compiled binary of
the function are computed locally by each party without commu-
nication or encryption. Moreover, the gates that do not contribute
to the final output are dynamically skipped. This is enabled by
the development of a novel algorithm called SkipGate that wraps
around the GC protocol. The algorithm dynamically computes the
gate outputs that can be calculated without communication and
marks the redundant gates for skipping.

The primary objective of SkipGate is to minimize the communi-
cation, the bottleneck of GC [7], at the expense of a small increase
in local computation. Several secure computation compilers sup-
port somewhat similar approaches like constant propagation and
dead gate elimination [2, 25, 28]. However, as we show in Section 3
and Section 5, SkipGate is superior to these solutions since it op-
erates at gate-level and does not require flattening the circuit for
the entire computation; that is, it dynamically detects and removes
gates that can be skipped from the garbling. Moreover, the static
circuit simplification method [29] that removes gates with constant
inputs at compile time is not required by the ARM2GC framework,
since the Boolean circuit of the ARM processor is generated by
industrial circuit synthesis tools which take care of this task. Note
that SkipGate avoids unnecessary garbling costs and is different
from the cryptographic improvements of GC such as free-XOR [15],
Row Reduction [27], and Half Gate [47] that reduce the garbling
cost of an individual gate. SkipGate’s operation is orthogonal to
these methods; the underlying GC protocol in ARM2GC already
benefits from these cryptographic improvements.

In contrast to the earlier custom high-level GC compilers, which
employed ad-hoc verification techniques [6, 16, 21, 46], ARM2GC
inherits available ARM compilers. These compilers go through
rigorous verification as they are used by a large community of
programmers in different fields. Therefore, it does not suffer from
the reliability issues exposed by Frigate [25] in most of the state-
of-the-art GC compilers. Moreover, it readily supports trivial sim-
plifications such as a = a & a, that is only supported by two of the
most recent frameworks Frigate [25] and CBMC-GC [2]. Moreover,
as our evaluation demonstrates, ARM2GC outperforms both these
frameworks on the common benchmark functions.

Contributions.

• We introduce SkipGate, the first algorithm that can dynamically
optimize the sequential description of a garbled circuit to allow
efficient secure evaluation of functions with publicly known
inputs. SkipGate locally computes the output of the gates when
it is independent of secret values. The algorithm also skips any
gate which does not contribute to the final output.

• We develop the ARM2GC framework based on the SkipGate
algorithm and the ARM processor. In this framework, users can
efficiently develop SFE applications in a high-level language like
C/C++. It enables them to benefit from the available thoroughly
verified compilers of ARM.We use the ARM architecture (without
affecting the instruction set) to make it most effective for the GC
protocol with SkipGate.

• Weprovide extensive experimental results and show that ARM2GC
is 156 times more efficient compared to prior garbled proces-
sors [40, 43]. The ARM2GC framework demonstrates compara-
ble performance to HDL synthesis approach of TinyGarble [39].
ARM2GC also outperforms the state-of-the-art high-level GC
compilers [2, 25] in terms of communication while utilizing un-
modified programming languages and compilers.

2 PRELIMINARIES
2.1 Security Model
Consistent with the earlier relevant literature [4, 10, 21, 25, 30], we
assume an honest-but-curious adversary model where the partici-
pating parties follow the agreed upon protocol but may attempt
to learn about the other parties’ input from the information at
hand [1]. This model can be generalized to more advanced adver-
sary models that are typically addressed by multiple runs of the
basic honest-but-curious model [18, 20].

2.2 Oblivious Transfer
Oblivious Transfer (OT) [26] is a cryptographic protocol based on
public key encryption executed between Alice (sender) and Bob
(receiver) where Bob selects one of the messages provided by Alice
without revealing his selection. Bob also does not learn anything
about the unselectedmessages. In an important special case of 1-out-
of-2 OT protocol (OT21), Alice holds a pair of messages (m0, m1); Bob
holds a selection bit b ∈ {0, 1} and obtainsmb without revealing b
to Alice and learns nothing aboutm1−b .

2.3 Garbled Circuit
Yao’s Garbled Circuit protocol [45] allows two parties Alice (garbler)
and Bob (evaluator) to jointly compute a function c = f (a,b) on
their private inputs (a from Alice and b from Bob) such that none
of them reveal their inputs to each other. In the end, one or both
of them learn the output c . The function f is represented as a
Boolean circuit consisting of 2-input gates. For each wire w in
the circuit, Alice assigns two k-bit random keys, called labels, X 0

w
and X 1

w corresponding to 0 and 1 Boolean values respectively. k
is the security parameter—typically k = 128 [1]. For each gate,
Alice encrypts the output label in each row of the truth table with
the corresponding input labels. The resulting table containing the
encrypted output labels is then randomly rearranged and called a
garbled table. She sends the garbled tables of all gates along with
the labels corresponding to her input values to Bob. Bob obtains
the labels corresponding to his input values obliviously through
the OT protocol from Alice. He uses these input labels to decrypt
the garbled tables gate by gate. In the end, Bob learns the labels for
the final output wire and Alice has its mapping to 0 and 1 so that
the actual value of the output can be determined.

2

The cost of communicating the garbled tables in the GC protocol
is its performance bottleneck [7]. Throughout the years, Yao’s GC
protocol has gone through a number of optimizations that reduce its
communication cost. We describe the most important optimizations
here. A significant optimization of the GC protocol is free-XOR [15]
that removes the communication cost for XOR gates. In this opti-
mization, for any wire w , Alice only generates the label X 0

w and
computes the label corresponding to 1 as X 0

w ⊕ (R ∥ 1) where ∥

represents bit concatenation and R is a global random (k − 1)-bit
value known only to Alice. With this convention, the label for the
output of an XOR gate with inputs a, b and output c can simply be
computed as Xc = Xa ⊕ Xb . Thus, it does not need any encryption
or transfer of garbled tables, meaning the XOR gate is free. As a
result, the optimization goal for circuit generation is to minimize
the number of non-XOR gates.

The Row Reduction [27] lessens the communication cost of the
AND gates by 25% by generating the labels of the output wire as a
function of the labels of the input wires and thus making one row
of the garbled table all zeros. The Half Gate method [47] utilizes
both free-XOR and row reduction and reduces the cost of AND
gates by an additional 25%.

Earlier GC protocols support only combinational circuit descrip-
tion of the logic functions. Along with the use of logic synthesis
for circuit generation, TinyGarble introduced the concept of the
Sequential Garbled Circuits [39]. Sequential circuits are cyclic
graph representation of the Boolean circuits and allow for a com-
pact representation of the functionality. Sequential circuits include
memory elements (flip-flops) in addition to logic gates and run for
multiple clock cycles. In sequential GC, in each clock cycle, all the
gates in the circuit are garbled/evaluated. At the end of each cycle,
the labels for the input wire of each flip-flop are simply transferred
(copied) to its output wire to be used in the next cycle. At the first
clock cycle, the output wires of flip-flops are treated as (either Alice
or Bob’s) inputs depending on the function.

Utilizing sequential circuits drastically reduces the memory foot-
print during garbling and evaluation. For example, a 32-bit summa-
tion can be performed using a 1-bit full-adder circuit that outputs
1-bit of the result at each clock cycle. Another example of a sequen-
tial circuit is a processor that fetches the instruction, performs the
corresponding computation, and stores the result.

3 SKIPGATE ALGORITHM
SkipGate is a set of novel algorithms that automatically identifies
gates that should be garbled given private and public inputs to the
circuit. Any gate that can be evaluated based on the public values
is skipped for garbling and is evaluated in plaintext instead. For
example, consider a Multiplexer where both inputs are private and
generated by some sub-circuits, whereas, the selection signal is
public and known to both parties. In this scenario, one can skip the
garbling of a sub-circuit that is not connected. However, standard
garbling methodologies require the entire circuit to be garbled and
to the best of our knowledge there is no systematic solution that
can identify minimal set of gates that is necessary to be garbled.

SkipGate is developed to complement the GC protocol for se-
quential circuits. As explained in Section 2.3, GC allows secure
computation of a function in the form c = f (a,b). However, for a

generic function, in addition to the private inputs a and b, there
can be public inputs (known to both parties). For example, in case
of RSA, the encryption key is public. A more practical scenario is
garbling a general purpose processor as we explain in Section 4.
In general, a processor will have two types of inputs: instruction
and data, where the first input is known to both parties unless
they want to keep the program private. If the GC framework does
not distinguish between public and private inputs, garbling a pro-
cessor will incur a massive cost for redundant garbling. Previous
work [39, 40, 43] proposed generating customized netlists for lim-
ited instruction sets. However, they fail to achieve the optimal
optimization due to the coarse grain nature of their approach, i.e.,
instruction level as opposed to gate level.

In SkipGate, we introduce a notion p to incorporate the public
inputs from both parties. It allows secure evaluation of functions in
the form of c = f (a,b,p) where p is the public input known to both
parties and a and b are the private inputs. The goal of SkipGate is to
reduce the circuit of c = f (a,b,p) into a simpler circuit c = fp (a,b)
utilizing the knowledge of public input p. Secure evaluation of
fp (a,b) requires less number of garbled tables than that of f (a,b,p)
when using the standard GC protocol and treating p as a private
input. SkipGate removes communication cost of garbling for a gate
when its output can either be computed independently by Alice and
Bob or has no effect on the final output. In other words, it reduces
the communication between the parties when it can be replaced
by less costly local computation. The cost reduction is especially
significant in a garbled processor where the control path is public
and independent of the private inputs. Before presenting SkipGate,
let us introduce the following notations and definitions.

In a classic Boolean circuit, each wire w carries a value (xw ∈

{0, 1}), whereas, in a garbled circuit, each wire carries a pair of
labels (X 0

w and X 1
w) on Alice’s side and one label (Xw ∈ {X 0

w ,X
1
w })

on Bob’s. IfXw = X 0
w , the actual Boolean value is 0 and ifXw = X 1

w ,
the value is 1. This, in turn, means that the information is shared
between the two parties. In our scheme, we combine the notion of
Boolean and garbled circuits. Each wire either carries a Boolean
value known to both parties independently (public wire) or it carries
a (pair of) label(s) (secret wire).
Illustrative Example: Assume a sequential circuit that has a 2-to-1
MUXwhose inputs come from two sub-circuits f0 and f1 connecting
to MUX inputs 0 and 1, respectively. At a certain clock cycle, if
the “select wire” of the MUX (x) is public, say equal to 1, both
parties know that the gates in the sub-circuit f0 do not need to be
garbled/evaluated since they have no effect on the final output. The
gates in theMUX itself act as wires and pass the input 1 (output of f1)
to the MUX output, thus they do not need to be garbled/evaluated
in that clock cycle either. However, in the conventional GC protocol
where public wire x is treated as a secret value, the entire circuit
has to be garbled/evaluated. In what follows, we explain how the
SkipGate algorithm identifies such gates.

It is worth mentioning that in a sequential garbled circuit [39],
the Boolean value of a wire can change at every clock cycle. A wire
may also switch between being secret and public from one clock
cycle to another. The SkipGate algorithm is executed once for every
sequential cycle. SkipGate’s decision on each gate depends on the
status of the gate’s inputs (public or secret) on that cycle.

3

3.1 Gate Categories
The SkipGate algorithm classifies the gates into four categories in
terms of the parties’ knowledge about the inputs of a given gate:

i Gate with two public inputs: In this case, the output is public
and can be computed locally by each party.

ii Gate with one public input: Depending on the gate type, the
output becomes either public or secret. For example, for an
AND gate with public value 0 at one input, the output becomes
0. This means that if the gate’s secret input is not connected
to any other gate, the gate generating the secret wire can be
skipped for garbling/evaluation. If the public input is 1, then
the AND gate acts as a wire and the output wire carries the
label of the secret input.

iii Gate with secret inputs that have identical (or inverted) labels:
This indicates that the two secret inputs have identical (or
inverted) Boolean values. Depending on the gate type, the
output becomes either public or secret. For example, the output
of an XOR gate with two inverted inputs (either secret or public)
is always 1 (public). Similar to Category ii, the gate generating
the inputs, if not connected to any other gate, can be skipped
for garbling/evaluation.

iv Gate with unrelated secret inputs: The output is always secret.
The gate has to be garbled/evaluated conventionally accord-
ing to the GC protocol. However, if its output does not have
any effect on the circuit output, the gate is skipped, i.e., the
corresponding garbled table is not transferred.

3.2 Algorithm
Algorithm 1 and Algorithm 2 show the SkipGate algorithm for Alice
and Bob sides, respectively. Lines 2-5 of Algorithm 1 and Lines 2-
4 of Algorithm 2 are similar to the GC protocol label generation
and transfer for both sides. The SkipGate algorithm has two main
phases: In Phase 1, the outputs of the gates with public input(s)
(Categories i-ii) are computed. In Phase 2, the gates with private
inputs (Categories iii-iv) are garbled/evaluated. For each round of
sequential cycle, Alice executes Phase 1 and 2 of SkipGate and
sends the generated garbled tables to Bob. Bob receives the tables
and executes two phases in order to evaluate the gates. However,
this does not affect the parallelism of the operation. When Bob is
evaluating the gates in cycle c , Alice is garbling the gates for cycle
c+1. In Line 14 of Algorithm 1 and Line 13 of Algorithm 2, the labels
associated with the input of flip-flops are copied to their output
for the next cycle [39]. Similar to conventional GC, at the end of
the protocol, Alice learns pairs of labels for each output wire and
Bob has one of the labels; they share this information to learn the
output c . For example, in the case where Alice intends to learn the
final output, she receives Bob’s output label and together with her
output labels finds the real output value (Line 16-17 of Algorithm 1
and Line 16 of Algorithm 2).

In SkipGate, an integer called label_fanout is associated with
each gate and indicates the number of times the gate’s output label
is used (either as a circuit’s output or an input to other gates). At the
beginning of each cycle (Line 8 of Algorithm 1 and Line 7 of Algo-
rithm 2), the label_fanout is set to the gate fanout in the circuit2.

2Fanout of a gate, borrowed from hardware design, is the number of subsequent gates
(and circuit outputs) dependent on the gate’s output.

Algorithm 1: SkipGate, Alice’s side.
Inputs: Sequential circuit of c = f (a,b,p), Alice’s input a,
public inputs p, number of clock cycles cc .
Outputs: Output c .
1: SkipGate_Alice (circuit, a, p, cc):
2: generate random labels→ (X 0

A,X
1
A,X

0
B ,X

1
B)

3: send Alice labels ∈ {X 0
A,X

1
A} based on her input a

4: send Bob labels (X 0
B ,X

1
B) through OT

5: set wires corresponding to a and b as private
6: set wires corresponding to p as public
7: for cid from 1 to cc do
8: initialize labels’ fanout
9: // Algorithm 3, process gate categories i-ii
10: perform Phase 1
11: // Algorithm 4, process gate categories iii-iv
12: perform Alice Phase 2→ garbled tables
13: send garbled tables
14: copy flip flops labels
15: end for
16: receive Bob output labels→ XC
17: compute output value based on output labels (X 0

C ,X
1
C) and

received labels (XC) → c

Algorithm 2: SkipGate, Bob’s side.
Inputs: Sequential circuit of c = f (a,b,p),
Bob’s input b, public input p, number of clock cycles cc .
Outputs: Output labels XC .
1: SkipGate_Bob(circuit, b, p, cc):
2: receive Alice’s labels→ XA
3: receive Bob labels→ XB through OT
4: set wires corresponding to a and b as private
5: set wires corresponding to p as public
6: for cid from 1 to cc do
7: initialize labels’ fanout
8: // Algorithm 3, process gate categories i-ii
9: perform Phase 1
10: receive garbled tables
11: // Algorithm 5, process gate categories iii-iv
12: perform Bob Phase 2
13: copy flip flops labels
14: end for
15: compute circuit output labels→ XC
16: send output labels (XC)

label_fanout of a gate may decrease, e.g., a gate whose output
is connected to an AND gate with 0 at the other input (Category
ii). If label_fanout reaches 0, it means that gate’s output label
does not have any effect on the rest of the circuit and final output.
The gates with label_fanout = 0 are subsequently marked for
skipping, which in turn decreases the label_fanout of the gates
connected to the input of the marked gates. Note that this step is
recursive in nature, i.e., when decreasing a gate’s label_fanout,

4

Algorithm 3: Phase 1 in SkipGate for both Alice and Bob sides.

1: SkipGate_phase1():
2: for g in circuit do
3: if both inputs of g are public then
4: //Category i
5: compute output of g based on its type

and inputs
6: set g label fanout to 0
7: else if one of the g inputs is public then
8: //Category ii
9: compute output of g based on its type, private, and public

inputs
10: if output of g is public then
11: set g label fanout to 1 // will become zero in

recursive_reduction()
12: recursive_reduction(g)
13: end if
14: end if
15: end for

it might reach zero and subsequently call the gates who are pro-
viding the input to this gate and so on (see Figure 3). Finally, the
gates in Category iv that have not been marked for skipping are
garbled/evaluated.

Algorithm 3 illustrates the Phase 1 of SkipGate in which Alice
and Bob find and compute the gates that belong to Categories i-ii.
label_fanout of the gates in Category i are set to zero. For gates
in Category ii, if the output becomes public, SkipGate decreases
the label_fanout of the secret input’s originating gate recursively
by invoking recursive_reduction (Algorithm 6). Figure 1 shows
four different examples in Phase 1. Bob does not receive any infor-
mation from Alice about the gates in Category i-ii because he can
locally evaluate Phase 1 just like Alice. An alternative approach is
that Alice sends the result of Phase 1 to Bob. This approach has
two main disadvantages: First, it makes the protocol altered if one
wants to enhance the security of the protocol to be secure against
malicious adversaries [18]. Second, it increases the communication
overhead which is the bottleneck of the GC protocol [7].

Algorithm 4 shows the Phase 2 of SkipGate for Alice’s side in
which she performs the same task for Category iii. She then gen-
erates garbled tables for gates with non-zero label_fanout in

0
1 0 S

f anout - -

1
S S

f anout =0

1

S S

1
1

Figure 1: Four examples in Phase 1 where gates are replaced
by zero, one, wire, or inverter. The top-left gate is in Cate-
gory i and the rest are in Category ii. label_fanout is set to
zero for the skipped gate.

Algorithm 4: Phase 2 in SkipGate, Alice’s side.
Output: list of garbled tables.
1: SkipGate.phase2_Alice():
2: for g in circuit where label_fanout > 0 do
3: if g’s input labels are equal or inverted then
4: //Category iii
5: compute g’s output based on its type
6: if g’s output label is public then
7: set g’s label_fanout to 1 // will become zero in

recursive_reduction()
8: recursive_reduction(g)
9: end if
10: else
11: //Category iv
12: garble g // table = null for XOR gates
13: if g is non-XOR then
14: add garbled table to the list
15: end if
16: end if
17: end for
18: remove garbled tables where gates’s fanout is 0

Category iv. Figure 2 shows four different examples in this phase.
By the end of Phase 2, due to the recursive nature of the fanout
reduction, label_fanout of some gates that have already been
garbled may become 0. In Line 18 of Algorithm 4, Alice filters the
garbled tables that have non-zero label_fanout to be sent to Bob.

Algorithm 5 shows the Phase 2 for Bob’s side. Bob evaluates the
gates that belong to Category iii and iv. In Line 18 of Algorithm 5,
Bob generates and assigns new unique labels for gates that were
filtered by Alice. Bob knows that the label_fanout of these gates
will eventually become 0. Therefore, he produces new labels for
them only to keep track of these secret variables that are used to
compute the output of the gates in Category iii. He can generate
these labels randomly or use a monotonic counter that increases by
one for each newly generated label. To distinguish valid GC labels
from his generated labels, he keeps a single bit flag along with each
label that indicates the label is generated by him and is not valid
for the GC evaluation.

S 0

S S

f anout =0

S
0

S

f anout =0

S

S
f anout - -

S2

S1
S3

f anout - -

f anout - -

f anout - -

Figure 2: Four examples of replacing and computing gates
in Phase 2. The top-right example is in Category iv, and the
rest are in Category iii. label_fanout is set to zero for the
skipped gates.

5

Algorithm 5: Phase 2 in SkipGate, Bob’s side.
Input: list of garbled tables.
1: SkipGate.phase2_Bob(garbled_tables):
2: for g in circuit where label_fanout > 0 do
3: if g’s input labels are equal or inverted then
4: //Category iii
5: compute g’s output based on its type
6: if g’s output label is public then
7: set g’s label_fanout to 1 // will become zero in

recursive_reduction()
8: recursive_reduction(g)
9: end if
10: else
11: //Category iv
12: if g is an XOR gate then
13: compute output label based on input labels
14: else if g is top of the garbled tables list then
15: remove the garbled table from the list→ gt
16: compute output label of g based on its type, input

labels, and gt
17: else
18: assign g’s output label to a unique random binary

string
19: end if
20: end if
21: end for

Algorithm 6: Recursive Fanout Reduction of SkipGate.
Inputs: Gate g (where the reduction starts).
1: SkipGate.recursive_reduction(g):
2: if g’s label_fanout is 0 then
3: return
4: end if
5: g’s label_fanout = label_fanout - 1
6: if label_fanout is 0 then
7: if g’s first input is secret then
8: recursive_reduction(first input of g)
9: end if
10: if g’s second input is secret then
11: recursive_reduction(second input of g)
12: end if
13: end if

Algorithm 6 illustrates the pseudo-code for the recursive fanout
reduction. It receives the circuit and a gate inside the circuit. It first
decreases the label_fanout of the given gate. If the label_fanout
becomes 0, it recursively calls the function with the gates that gen-
erate the corresponding secret input(s). This process is illustrated
on an example circuit in Figure 3.

3.3 Identification of Identical and Inverted
Labels

According to the GC protocol, Bob only has one label Xw for each
secret wire w . Due to free-XOR [15], he does not need to modify

the label when he evaluates a NOT gate because the labels cor-
responding to 0 and 1 are inverted by Alice during the garbling
process, flipping the secret value of w accordingly. This, in turn,
means that Bob cannot tell apart an identical and inverted secret
value based on the label alone. However, it is still possible for Bob
to keep track of the flips by storing one bit along with the label.
After evaluating a NOT gate, he simply flips the bit. This extra bit
helps him to differentiate between identical and inverted secret
values which are crucial during Phase 2.

0

S1

0

f anout =0

Garbling
this gate

fanout No
change

f anout - -
S2

S3

f anout - -

f anout - -

f anout - -

f anout - -

f anout - -

1

becomes 0

2

3

4
5

5

6

6

Figure 3: Recursive reduction of label_fanout to skip unnec-
essary gates (Algorithm 6).

3.4 Computational Complexity
The SkipGate algorithm decreases the communication cost, which
is the bottleneck of GC, at the expense of increasing the local com-
putations. The conventional GC protocol has a linear computational
complexity in terms of the number of gates in the circuit for each
sequential cycle. We show that, despite its recursive appearance,
the SkipGate algorithm does not increase the computation com-
plexity of the GC protocol. All parts of the SkipGate algorithm,
except recursive_reduction (Algorithm 6), is executed once per
gate, thus they incur a complexity similar to the classic GC proto-
col. The only procedure that can potentially increase the compu-
tation complexity is recursive_reduction function whose num-
ber of invocations depends on the underlying circuit and whether
input wires are secret or public. To find the complexity of Skip-
Gate, we present an upper bound on the number of invocations of
recursive_reduction function.

The termination condition in recursive_reduction is the fanout
reaching zero (Lines 2 of Algorithm 6). Thus, the worst case sce-
nario is when the function reduces the fanout of all the gates to
zero. In this case, the number of execution of the fanout decrement
(Line 5) should be at most the sum of all the initialized fanouts.
label_fanout is initialized with the gate fanout in the circuit. The
upper bound on the sum of fanouts of all the gates in the circuit is

F =
n∑
i=1

д[i]. f anout ≤ 2n −m + q,

where n is the number of gates, q, and m are the number of cir-
cuit output and inputs, respectively. Each gate has two inputs, as
required by the GC protocol, and each input creates a fanout in
previous gates unless it is a circuit input. Also, each output wire

6

incurs the fanout of one. Both q andm are typically less than or at
most in the order of n. Thus, F and subsequently the number of in-
vocation of recursive_reduction function are O

(
n
)
. This shows

that SkipGate does not increase the overall linear computational
complexity of the GC protocol.

3.5 Correctness and Security Proof
Correctness: Given the correctness of Yao’s GC protocol, we show
that GC protocol with SkipGate is also correct. In SkipGate, the
topology of the circuit is not changed, thus the dependencies of the
values remain the same. Therefore, we only prove that processing
a single gate remains correct in SkipGate.

The operations for gates in Category i are merely based on the
Boolean operation of the gates and are clearly correct. For gates
in Categories ii-iii, the secret input is considered as an unknown
variable. Either the label at the secret input of the gate is passed
to its output or the output is set to a public value. Therefore, the
functionality of the gate is not changed. Gates in Category iv with
non-zero label_fanout are garbled/evaluated according to the GC
protocol. For the rest of the gates in Category iv, label_fanout
= 0 indicates that their secret output does not have any effect on
the final output of the circuit. Therefore, they can be safely skipped.
As such, we conclude that the SkipGate algorithm with the GC
protocol results in a logically correct output.
Security: The GC protocol is proved to be secure under honest-
but-curious adversary model for any two-input Boolean function
f (a,b) where a and b are private inputs from Alice and Bob, respec-
tively [1, 19]. In this work, we extend the function to the form
of f (a,b,p) to include a public input p that is known to both
parties. The SkipGate algorithm reduces the Boolean circuit of
f (a,b,p) to a two-input circuit of fp (a,b) where, for a given p,
fp (a,b) = f (a,b,p) for any a and b. fp (a,b) consists of the gates
in Category iv with non-zero label_fanout evaluated by the GC
protocol. The process of skipping gates from f (a,b,p) only utilizes
the public input p which is already known to both parties. In the
process, the private values are treated as unknown Boolean vari-
ables. In other words, Alice and Bob do not access their inputs in
the SkipGate algorithm for reducing f (a,b,p) to fp (a,b). Thus, no
information about the private inputs a and b is accessed/revealed by
the SkipGate algorithm. The garbling/evaluation of the two-input
Boolean function of fp (a,b) is passed to the original GC protocol.
Therefore, the security proof of SkipGate is identical to that of the
GC protocol.

4 ARM2GC
In this section, we present ARM2GC, a GC framework based on a
garbled ARMprocessor and the SkipGate algorithm. The framework
aims to simplify the development of privacy-preserving applications
while keeping the garbling cost as low as the best optimized garbled
circuits. We first describe the overview of ARM2GC and its API for
GC development. Then, we explain how ARM’s unique architecture
helps to decrease garbling overhead. Next, the effect of SkipGate in
reducing the garbling cost is discussed. Finally, we discuss why we
do not employ Oblivious RAM for ARM register files.

4.1 Global Flow
The ARM2GC framework allows users to write a two-party SFE
program in C/C++ (or any language that can be compiled to the
ARM binary code). Figure 4 shows the overview of the framework.
The SFE program is compiled using an ARM cross-compiler, e.g.,
gcc-arm-linux-gnueabi. The compiled binary code is fed to the
SkipGate algorithm as the public input p. The Boolean circuit that
is going to be garbled/evaluated is the synthesized ARM processor
circuit. The ARM2GC framework supports the following API:

void gc_main(

const int *a,// Alice 's input

const int *b,// Bob's input

int *c) {// output array

// The user's code goes here.

}

The entry function, gc_main, receives three arguments: pointers
to Alice’s input, Bob’s input, and the output. The framework has
five separate memory elements (consisting of flip-flops and MUXs)
to store: Alice’s inputs, Bob’s inputs, output, stack, and instructions.
The flip-flops in the instruction memory are initialized with the
compiled binary code that is known to both parties (the public input
p). The flip-flops in Alice’s and Bob’s memories are initialized with
the labels corresponding to their private inputs a andb, respectively.
The other flip-flops in the stack, output, pipeline registers, and
the register file are initialized to zero. The ARM circuit is garbled
following the sequential garbling process [39] for a pre-specified
number of clock cycles.

Function
(C/C++)

ARM
compiler

Function
(binary)

SkipGate
+Evaluting

Bob

Bob’s
input

ARM
circuit

SkipGate
+Garbling

Alice

Alice’s
input

Figure 4: Overview of the ARM2GC framework.

4.2 ARM as a Garbled Processor
In this work, we choose ARM as our garbled processor which
is a more ubiquitous and sophisticated processor compared to
MIPS [39, 40, 43]. ARM has two main advantages: (1) Pervasiveness:
the compilers and toolsets of ARM are under constant scrutiny,
updating, and probably, more optimized as a result. (2) Conditional
Execution: Designed to improve performance and code density, con-
ditional execution in ARM allows each instruction to be executed
only if a specific condition is satisfied [38].

ARM compilers tend to replace conditional branches with condi-
tional instructions to make the flow of the program predictable, and
thus, lower the cost of branch misprediction. Similarly, in a garbled
processor, the main design effort is to make sure that the flow of the

7

1: cmp $8, $9
2: bne L0
3: mov $1, #10
4: b L1
5: L0:
6: mov $2, #20
7: L1:
 ...

(a) Without Conditional
Execution

1: cmp $8, $9
2: moveq $1, #10
3: movne $2, #20
4: L1:
 ...

(b) With Conditional Exe-
cution

Figure 5: An example illustrating how conditional execution
in ARM can reduce the code size andmake the programflow
predictable.

program is predictable so that the next instruction remains public.
Replacing conditional branches with conditional instructions in
garbled ARM generates a code with a predictable flow. Figure 5
shows an example function compiled into assembly with and with-
out the conditional execution. For the code without the conditional
execution, the program counter becomes dependent on the results
of the comparison. If one of the compared values are secret, the
program counter becomes secret as well. For code with the con-
ditional execution, the program counter goes serially through all
the commands serially, irrespective of the result of the compari-
son operation. Thus, it always remains public. We also modify the
ARM controller such that conditional instructions always take the
same number of cycles regardless of their condition (taken or not
taken). Otherwise, the program flowwill be dependent on the secret
condition. Having a secret program counter makes the SkipGate
algorithm less effective on ARM2GC and therefore reduces the
efficiency of the execution.

We modify and remove a few features from the ARM processor
such as interrupts, co-processors, and performance-related compo-
nents including cache and pipeline. These components do not bring
any performance advantages in the GC protocol, as the circuit is
garbled/evaluated gate by gate (serially). Note that unlike in hard-
ware, the performance of GC does not increase by parallelizing the
gates in the circuit. In the GC protocol, the total number of garbled
non-XOR gates is the only factor affecting the performance. The
user does not need to pass any flag to the ARM compiler because
of the removed components since such blocks only enhance the
performance of the processor internally. Therefore, the compiled
instructions do not have to be modified because of this modification.

Implementation of the ARM processor results in a complex and
large netlist (≈ 5 times larger than that of a MIPS processor). Thus,
using ARM instead of MIPS in the earlier garbled processor ap-
proaches [40, 43] would incur an even higher cost. However, the
majority of the components of the ARM processor remain idle dur-
ing execution of an instruction. In the next section, we describe
how SkipGate utilizes this characteristic to minimize the cost of
garbling the processor.

4.3 Effect of SkipGate on ARM2GC
As explained above, the instruction memory of the ARM processor
is initialized with public values (compiled program). Therefore, if

the program counter (the address of the next instruction) is public,
the content of the next instruction becomes public as well. As a
result, the control path also becomes public and SkipGate can easily
detect the idle components to mark them for skipping. Moreover,
due to SkipGate, the gates of the active components that are only
transporting data between memory, register file, and ALU act as
wires and do not incur any cost. According to SkipGate’s notation,
the ARM Boolean circuit is a 3-input function c = f (a,b,p) where
p is the public binary code and a and b are the parties’ private
inputs. SkipGate reduces the ARM circuit into a smaller circuit of
c = fp (a,b)where fp is able to perform the exact operation required
by the public binary code p, e.g., c = a + b. Therefore, the main
garbling cost is paid only for the actual computation on the secret
values. As explained in the previous section, SkipGate performs
these optimizations at the gate level, in contrast to instruction level
as in [40, 43].

4.4 Why not Sub-linear Oblivious RAM?
As mentioned in Section 4.1, we use an array of MUXs and flip-flops
to implement the register file in the ARM circuit. This means that
the cost of accessing the register file, when performed obliviously,
is linear with respect to its size. One natural question would be why
we did not employ Oblivious RAM (ORAM) that enables oblivious
access to memories in the GC protocol with sub-linear cost [44, 48].
The reason is that, in most cases, the access to the register file is not
required to be oblivious. Since the instructions come from a publicly
known instruction memory, both parties know which register is
accessed. The SkipGate algorithm utilizes this information to skip
garbling of the gates in the MUXs of the register file, thus, no
garbling cost is required for such accesses. With ORAM, all the
accesses to the register file would be the costly oblivious access.

In rare occasions where two or more instructions should be
garbled at a time, accessing a register would not be free usingMUXs.
These cases only happen when ARM compiler fails to replace a
conditional branch on a secret value with conditional instructions.
The user can typically alter the program in a way that the compiler
avoids such branches and replaces it with conditional instructions
instead. However, in these cases, the SkipGate algorithm removes
most of the gates in the register file. Currently, state-of-the-art
ORAM constructions such as Circuit ORAM [42], SR-ORAM [48],
or Floram [5] start outperforming the linear scan (MUXs and flip-
flops) from memory size of 8KB (512-bit block size), 8KB (32-bit
block size), 2KB (32-bit block size), respectively. ARM’s total register
file has 16 registers, each containing a 32-bit value, thus, the total
size of the register file is 64B which is smaller than the break-even
points of ORAMs.

Figure 6 shows an example where after execution of a branch on
a secret value, the next instruction becomes secret and unknown to
parties. In this example, the program counter can either be 3 or 6
depending on the outcome of the comparison in Line 1. Thus, two
instructions add $1, $2, $3 ($3 = $1 + $2) and sub $5, $6,
$7 ($5 = $6 - $7) have to be garbled/evaluated at the same time.
For fetching the second instruction from the register file, we only
have two choices: $2 and $6. This means that, instead of having a
complete oblivious access to the register file with 16 choices, we
only have to obliviously select between 2 of the 16 registers. This

8

1: cmp $8, $9
2: bne L0
3: add $1,$2,$3
4: b L1
5: L0:
6: sub $5,$6,$7
7: L1:
 ...

Program
Counter

1

2

?

?

Figure 6: Failure to replace a secret branch with conditional
instructions, makes the program counter secret. Thus, the
instruction becomes secret.

costs far less than using ORAMs. The cost of oblivious access using
MUXs and SkipGate to a subset of a memory is equal to an oblivious
access to a memory with the size of the subset.

The rationale for using an array of MUXs in the register file
also applies to the code, data, and stack memories where the access
is almost always public and known to both parties. In the worst
case, only a subset of memory is accessed obliviously, thus making
the cost of memory access below the threshold of switching to
ORAMs. The integration of the SkipGate algorithm and garbled
processor introduces an unusual use case for oblivious memory
where oblivious access is performed only on a varying subset of
the memory. The subset can be different from one access to the
other. The current sub-linear ORAM protocols cannot address this
scenario efficiently. Thus, an interesting research question is raised:

Is it possible to obliviously access (read/write) a varying
subset of the memory with a sub-linear cost in terms of the
subset size?

Note that programs which contain secret terminate conditions in
the for-loops prohibit the protocol to be terminated. The underlying
reason is that when the number of loop executions is secret, it is
not known when the program is going to finish. This is, in fact,
a fundamental constraint for any high-level secure computation
frameworks and it is not a shortcoming of ARM2GC. By definition,
securely computing for-loops for secret number of times, requires
that the protocol’s behavior is not dependent on the value of the
secret condition. Since the value of the secret condition can be
arbitrarily large, the protocol should not terminate until after per-
forming dummy operations for the maximum possible number of
loop executions which is prohibitively expensive.

5 EVALUATION
5.1 Evaluation Setup
We use Synopsis Design Compiler (DC) H-2013.03-SP4 [3] along
with TinyGarble [39] synthesis and technology libraries to generate
the netlists for the benchmark circuits and the ARM processor.

For the ARM2GC framework, we use the Amber ARM project,
an open-source implementation of ARM v2a ISA on opencores [37].
The ARM circuit is modified as explained in Section 4.2. Synthe-
sizing the ARM processor with Synopsis DC takes a few hours.
However, the process is done only once for a given memory size
and it can be used for any set of functions and inputs afterward. The

Table 1: Improvement by the SkipGate algorithm on sequen-
tial circuits generated by TinyGarble [39]. These functions
do not have public inputs. SkipGate benefits from public ini-
tial values of the small number of flip-flops to reduce their
garbling cost.

Function # of Garbled Non-XOR # of Improv.w/o SkipGate w/ SkipGate Skipped

Sum 32 32 31 1 3.13%
Sum 1024 1,024 1,023 1 0.10%
Compare 32 32 32 0 0.00%
Compare 16,384 16,384 16,384 0 0.00%
Hamming 32 160 145 15 9.38%
Hamming 160 1,120 1,092 28 2.50%
Hamming 512 4,608 4,563 45 0.98%
Mult 32 2,048 2,016 32 1.56%
MatrixMult3x3 32 25,947 25,668 279 1.08%
MatrixMult5x5 32 120,125 119,350 775 0.65%
MatrixMult8x8 32 492,032 490,048 1,984 0.40%
SHA3 256 40,032 38,400 1,632 4.08%
AES 128† 15,807 6,400 9,407 59.51%

†The missing key expansion module to AES 128 of [39] is added here.

benchmark functions for ARM2GC are implemented in C and com-
piled using GNU gcc-arm-linux-gnueabi (Ubuntu/Linaro 5.3.1-
14ubuntu2). We used -Os compiler optimization flag in order to
reduce the number of instructions. We modified the header assem-
bly code to change the addresses of stack, code, and data memories
in the compiled binary. We do not apply any optimization on the
binary code. Thus, similar to a normal software compilation, it takes
less than a second to compile the majority of the functions into the
ARM binary codes.

5.2 Benchmark Functions and Metrics
We use the benchmark functions that have frequently been used
for evaluation in the GC literature [2, 25, 39]. The most impor-
tant metric to compare the cost of garbling is the total number of
garbled non-XOR gates. This metric encompasses both the cost of
computation (encrypting/decrypting garbled tables) and the cost
of communication (transferring garbled tables) in the GC protocol
due to the free-XOR optimization [15].

5.3 Effect of SkipGate on Sequential GC
As described in Section 3, the SkipGate algorithm avoids redundant
garbling/evaluation of gates in sequential circuits with public wires.
In the sequential benchmark circuits reported in TinyGarble [39],
the flip-flops were initialized with known values but their output
wires were treated as secret. We applied SkipGate to the same
benchmark functions to demonstrate the cost reduction even for a
small number of public values. In Table 1, we compare the cost of
garbling for circuits generated by TinyGarble [39] with and without
applying the SkipGate algorithm. As can be seen, cost reduction
of SkipGate can be as high as 59.5% for AES and as little as 0% in
Compare function.

The degree of improvement depends on the structure of the
circuit and whether or not the registers are connected to non-XOR
gates. For example, in AES, garbling of the controller part of the
sequential circuit (including a counter keeping track of the AES

9

Table 2: Comparison of the number of garbled non-XOR
gates of ARM2GCwith the HDL synthesis approach of Tiny-
Garble [39]. Both frameworks benefit from SkipGate.

Function
of Garbled Non-XOR

OverheadTinyGarble [39] ARM2GC
(Verilog) (C)

Sum 32 31 31 0.00%
Sum 1024 1,023 1,023 0.00%
Compare 32 32 32 0.00%
Compare 16,384 16,384 16,384 0.00%
Hamming 32 145 57 -60.69%
Hamming 160 1,092 247 -77.38%
Hamming 512 4,563 1,012 -77.82%
Mult 32 2,016 993 -50.74%
MatrixMult3x3 32 25,668 27,369 6.63%
MatrixMult5x5 32 119,350 127,225 6.60%
MatrixMult8x8 32 490,048 522,304 6.58%
SHA3 256 38,400 37,760 -1.67%
AES 128† 6,400 6,400 0.00%

†The missing key expansion module to AES 128 of [39] is added here.

round and MUXs connecting to it) is avoided by SkipGate because
both parties know the AES control path in advance. Note that the
functions in Table 1 do not have any public known inputs that are
the main target of SkipGate. Nevertheless, SkipGate reduces the
cost of GC by leveraging the public initial value of the small number
of flip-flops in the circuits.

Comparison with Garbled MIPS [43]. Even though the ap-
proach of ARM2GC is similar to the garbled MIPS presented in [43],
it outperforms that work by a long margin. For example, to com-
pute the Hamming distance between 32 32-bit integers 3, [43] needs
481K garbled gates, whereas ARM2GC needs only 3073- and im-
provement by 156×.

5.4 ARM2GC vs HDL Synthesis
Table 2 compares the cost of garbling of (i) functions devised in Ver-
ilog HDL and constructed by the hardware synthesis technique of
TinyGarble [39] with (ii) functions developed in C and constructed
by the ARM2GC framework. SkipGate is applied in both cases. As
expected, ARM2GC incurs only a small overhead (at most 6.6% for
MatrixMult8x8) compared to hardware synthesis method. In the
case of Hamming distance function, ARM2GC results in even less
number of non-XOR gates (up to 77.8% improvement). Note that
we use an efficient binary tree-based method [11] for Hamming
distance realization in C.

5.5 ARM2GC vs GC Frameworks Supporting
High-level Languages

Table 3 reports the cost of garbling for the benchmark functions con-
structed by ARM2GC and the prior-art GC frameworks Frigate [25]
and CBMC-GC [2]. The last column compares ARM2GC with the
best of these two. In all cases, ARM2GC is either equal or better
than the earlier frameworks in terms of garbling cost. It shows
significant improvements in hamming distance and AES, 44% and
3as reported in [43], this is different from the common approach of computing Ham-
ming distance where the inputs are binary

Table 3: Comparison of the number of garbled non-XOR
gates of ARM2GC with the best prior art solution support-
ing high-level languages. We choose CBMC-GC and Frigate
for comparison as they outperform previous frameworks
for these benchmarks. The improvement is shown w.r.t. the
best of these two.

Function Number of non-XORs Improv.
CBMC-GC [6] Frigate [25] ARM2GC

Sum 32 - 31 31 0.00%
Sum 1024 - 1,025 1,023 0.20%
Compare 32 - 32 32 0.00%
Compare 16,384 - 16,386 16,384 0.01%
Hamming 160 449 719 247 44.99%
Mult 32 - 995 993 0.20%
MatrixMult5x5 32 127,225 128,252 127,225 0.00%
MatrixMult8x8 32 522,304 - 522,304 0.00%
AES 128 - 10,383 6,400 38.36%
a = a op‡ a 0 0 0 0.00%
SHA3 256 - - 37,760 -

‡op represents any Boolean operation (+, &, ⊕, etc .)

38% respectively. Moreover, as shown in the table, software-level
optimizations such as a = a & a are automatically performed by
the ARM compiler. Such operations can result in compile time or
runtime errors in several state-of-the-art frameworks as reported
in [25]. Note that we choose to compare with these two frameworks
as they outperform the earlier frameworks like Obliv-C [46] and
OblivM [21]. Even though the approach of ARM2GC is similar to
the garbled MIPS presented in [43], it outperforms that work by a
long margin. For example ARM2GC requires 8.4E3 and 49E3 times
less garbled non-XOR gates for computing Hamming distances with
32 and 512-bit inputs, respectively.

5.6 Effect of SkipGate on ARM
Table 4 shows the cost of garbling an ARM processor for the bench-
mark functions using conventional GC compared to GC with the
SkipGate algorithm. Since the instruction memory is known to both
parties in ARM, SkipGate omits a significant number of non-XOR
gates in the circuits. The circuit of ARM has 126,755 non-XOR gates
and for computing a function, for example, Hamming 160, it takes
1,909 clock cycles. It means with the conventional GC protocol,
garbling/evaluation of 1, 909 × 126, 755 = 241, 975, 295 non-XORs
is required. SkipGate reduces the circuit into a smaller circuit with
only 247 non-XORs (almost seven orders of magnitude less). In the
case of AES, we achieve more than six orders of magnitude improve-
ment over the garbled processor based on the conventional GC
without the SkipGate algorithm. The algorithm transforms the im-
practical cost of garbling an ARM processor into the near-optimal
cost of the reduced circuit. These dramatic improvements are due
to a large number of public inputs in the ARM processor origi-
nating from the instruction memory that allows SkipGate to skip
garbling/evaluation most of the gates in the ARM circuit.

5.7 Complex Functions
We develop a number of complex functions, as described below,
with the ARM2GC framework. In each of these functions, the input

10

Table 4: Improvement by SkipGate on ARM2GC.

Function # of Garbled Non-XOR Improv.
w/o SkipGate w/ SkipGate (1000X)

Sum 32 3,817,680 31 123
Sum 1024 76,483,260 1,023 75
Compare 32 4,072,192 130 31
Compare 16,384 1,047,095,280 16,384 64
Hamming 32 67,063,912 57 1,177
Hamming 160 242,931,704 247 984
Hamming 512 863,559,216 1,012 853
Mult 32 4,199,448 993 4
MatrixMult3x3 32 72,790,432 27,369 3
MatrixMult5x5 32 286,071,488 127,225 2
MatrixMult8x8 32 1,079,894,416 522,304 2
SHA3 256 29,354,783,052 37,760 777
AES 128 54,621,701,856 6,400 8,535

is XOR-shared between two parties. Table 5 shows the improvement
for these functions by SkipGate over the state-of-the-art GC.
Bubble-Sort: This function receives a list of 32 32-bit integers, sorts
the list using Bubble Sort algorithm, and then writes the sorted list
in the output memory.
Merge-Sort: This function receives a list of 32 32-bit integers, sorts
the list using Merge Sort algorithm, and then writes the sorted list
in the output memory.
Dijkstra: This function receives the adjacency matrix of a directed
graph with 64 weighted edges (described as a 32-bit integer), finds
the shortest path between a source and other nodes using Dijk-
stra algorithm, and then writes the corresponding distances in the
output memory.
CORDIC: COordinate Rotation DIgital Computer receives a de-
gree and a 2D vector described as 32-bit fixed-points (2-bit decimal
and 30-bit fraction), computes trigonometric, hyperbolic, or expo-
nential functions according to Universal CORDIC algorithm [41],
and then writes the final 2D vector in the output memory. The
output vector in CORDIC algorithm converges one bit per itera-
tion; thus, it requires 32 iterations in our case. The addition, shift,
and non-oblivious table lookup are the only required operations
in this algorithm. Universal CORDIC has two modes for updating
vector: rotational and vectoring and three modes for lookup table:
circular, linear, and hyperbolic. Combining these two modes allows
the user to compute trigonometric, hyperbolic, exponential, square
root, multiplication, or division functions. Among these functions,
square root and division have previously been reported in [12] and
require 12, 733 and 12, 546 non-XOR gates respectively, almost three
times more than ARM2GC.

Table 5: Improvement by SkipGate on ARM2GC for the com-
plex functions.

Function (bit) # of Garbled Non-XOR Improv.
w/o SkipGate w/ SkipGate (1000X)

Bubble-Sort32 32 1,366,390,620 65,472 21
Merge-Sort32 32 981,712,458 540,645 2
Dijkstra64 32 1,493,339,886 59,282 25
CORDIC 32 228,847,596 4,601 50

6 RELATEDWORK
The idea of designing a custom programming language to describe
and efficiently compile functions for secure evaluation dates back
to Fairplay, the first GC compiler [23]. Fairplay introduces a cus-
tom language, namely, the Secure Function Definition Language
(SFDL). SFDL compiles to Secure Hardware Description language
(SHDL). More powerful languages and compilers were later pre-
sented [8, 17, 30]. The introduction of a custom programming lan-
guage is neither user-friendly nor versatile when compared with
conventional programming languages like C.

Another approach adopted in FastGC [9, 11], VMCRYPT [22], and
ABY [4] for GC circuit generation is to design a library containing
implementations of GC optimized sub-circuits in a general-purpose
high-level language like Java. This method requires the user to have
a thorough understanding of the circuit description of the secure
function as the circuits and their decomposition into sub-circuits
has to be specified manually.

The first GC implementation supporting a general purpose lan-
guage is CBMC-GC [10] which supports ANSI-C. However, it sup-
ports only a subset of ANSI-C that is not compatible with many
important primitives, and therefore, not compatible with legacy
code. The main drawback of [10] is the compile-time loop unrolling
that makes it scale poorly with the input size. To cope with this
problem, the compiler presented in [16] introduces loops that are
specified manually within the code and not unrolled until the GC
evaluation. The circuit is stored as a Portable Circuit Format (PCF).
This compiler supports a more general version of C language. How-
ever, in [10] and [16], the code had to be compiled with their custom
compiler. As a result, users cannot benefit from the optimizations
provided by general purpose compilers. Moreover, these compilers
are less scrutinized and more prone to bugs. In contrast, ARM2GC
supports any general purpose ARM compiler and thus benefits from
all the state-of-the-art optimizations, supports legacy codes, and is
fully verified.

The TinyGarble framework [39] allows a user to describe the
function with a Hardware Description Language (HDL) like Verilog
or VHDL. It presents custom GC-optimized libraries which enable
synthesis of the HDL code with standard logic synthesis tools, thus,
benefiting from the standard hardware optimizations. TinyGarble
also suggests using sequential circuits for GC to solve the scalabil-
ity issue. Unlike [16], it allows to infer loops automatically and to
optimize across multiple sub-circuits. However, TinyGarble limits
the programmer to a hardware level language which is less user-
friendly than a high-level compiler. Our work utilizes TinyGarble’s
methodology to generate the most optimized Boolean circuit for
the ARM processor. The big advantage of ARM2GC is that the func-
tion to be evaluated securely can be written in any programming
language and compiled with any ARM compiler of choice.

The work in [43] accepts a function as a MIPS machine code,
which allows the programmer to describe the function in a language
of her choice and compile the function with a standard compiler.
They design a MIPS emulator to securely execute the code. To avoid
emulating a large number of instructions supported by the MIPS
machine, they perform a data independent static analysis before
execution of the program to build a small instruction bank and ALU
circuit tailored for each processor cycle. In contrast, our approach

11

performs this optimization with bit-precision instead of instruction-
precision. Moreover, this is done in the runtime while the circuit
remains the same for each cycle.

To solve the problem of secure conditional branches, Wang et
al. [43] propose to pad nop instruction to parallel branches so that
their lengths become equal. This way when the code exits either of
the branches, it ends up in the same instruction and the process can
continue with less cost. However, this approach increases the cost
for conditional branches. To mitigate this problem, we propose to
use the ARM processor which supports conditional execution and
can replace these branches with conditional instructions (see Sec-
tion 4.2). In rare cases where the ARM compiler fails to replace the
conditional branch, we adopted their approach in padding the par-
allel branches with nop instruction. Overall, our evaluation shows
that ARM2GC outperforms their MIPS framework, for example
by 4 orders of magnitudes for Hamming distance function, mostly
thanks to the SkipGate algorithm and its bit-precision optimization.

Recently, Mood et al. [25] performed extensive research on the
efficiency and reliability of the current frameworks and found out
that most of them suffer from reliability issues. For example, they
reported that PAL, KSS, CMBC, Obliv-C, ObliVM, and PCF crashed
on programs that should have been compiled correctly. Moreover,
KSS, ObliVM, and PCF generated incorrect netlists. As they discuss
in the paper, there are serious limitations for formal verification
and due to its impracticality, they limit their analysis to validation
by testing. This type of testing does not detect all possible flaws
in the compilation process. While many of the issues were later
taken care of by the respective developers, this research exposed a
serious reliability issue regarding the usage of these compilers.

Frigate [25] introduces a new C-style language for SFE and the
corresponding compiler. Whereas in our work, we utilize C lan-
guage with standard ARM cross compiler. Our work also supports
any programming language and its corresponding ARM compiler.
As of now, Frigate only supports three different types (uint_t,
int_t, and struct_t). The user can add her own types but it re-
quires a good understanding of the internal structure of the com-
piler. Since these three types have a specific bit length, the final
computation is not bit-level efficient. Frigate divides the program
into different functions and creates the circuit by calling the cor-
responding functions and as a result prohibits the overall circuit
optimization. In contrast, our ARM circuit is optimized globally
using state-of-the-art hardware synthesis techniques. Therefore,
our overall platform is based on very well-developed and debugged
tools that have been used in industry for many years. Also, if any
new update becomes available for these tools, they can effortlessly
be incorporated into our framework.

It is worth mentioning that SkipGate is different from the “con-
stant propagation” and “dead gate elimination” techniques intro-
duced in [16] and [17], respectively. These solutions eliminate parts
of the code that do not contribute to the output (or can be computed)
at the compile time using static analysis. In contrast, SkipGate per-
forms gate-level optimization dynamically at the runtime to reduce
the number of non-XOR gates to close to the optimal value (com-
pared to state-of-the-art HDL frameworks [39]). Indeed, this is the
reason why ARM2GC outperforms [16, 17]. For example, for 160-
bit Hamming distance, [16] reports 880 number of non-XOR gates

Table 6: High-level characteristics of secure computation
frameworks, their programming languages, and compilers.
“Cust.” indicates custom designed-compilers. CP: support
forConstant Propagation. DCE: support forDeadCodeElim-
ination. DGE: support for Dynamic Gate Elimination.

Framework Lang. Compiler CP DCE DGE
CBMC-GC [2] ANSI-C Cust. yes yes no
KSS [17] DSL Cust. no yes no
PCF [16] ANSI-C Cust. yes yes no
ObliVM [21] DSL Cust. no no no
Obliv-C [46] DSL Cust. yes yes no
TinyGarble [39] HDL HW Synth. no yes no
Frigate [25] DSL Cust. yes yes no
ARM2GC C/C++† ARM yes yes yes

†

any language with supported ARM compiler

while ARM2GC garbles only 247. Table 6 shows a high-level com-
parison of ARM2GC to the prior secure computation frameworks.

In [14] and [31], authors address an interesting yet orthogonal
problem to ours. They compute what information can be obtained
from computation output and each party’s private input, whereas,
we compute what information can be revealed based on private
and public inputs from both parties to avoid garbling/evaluating
selected gates. Their approach is inapplicable when only one party
is providedwith final output and function is required to be evaluated
without revealing intermediate values. They do not use a standard
verified compiler and cannot garble sequential circuits.

There has been extensive research on secure computation frame-
works for machine learning [13, 24, 33, 36]. These frameworks are
customized for the operations that are frequently performed in
the machine learning applications such as vector-dot-product and
certain non-linear functionalities. In contrast, the focus of this work
is to create a generic high-level secure computation framework.

7 CONCLUSION
This paper introduces the novel SkipGate algorithm for Yao’s Gar-
bled Circuit protocol. The algorithm dynamically omits the com-
munication cost for gates with outputs independent of private data
and also the gates not affecting the final output. Based on the Skip-
Gate algorithm and the ARM processor architecture, we create
ARM2GC, a simple-to-use and verified garbled circuit framework.
Users can develop secure functions in high-level languages and
compile them using standard ARM cross-compilers. As a result of
SkipGate, only the gates associated with private data in the ARM
circuit incur communication and encryption cost. Evaluations on a
host of benchmark functions show that the ARM2GC framework
achieves efficiency close to that of HDL-level synthesis methods.

REFERENCES
[1] Mihir Bellare, Viet TungHoang, SriramKeelveedhi, and Phillip Rogaway. Efficient

garbling from a fixed-key blockcipher. In S&P. IEEE, 2013.
[2] Niklas Büscher, Martin Franz, Andreas Holzer, Helmut Veith, and Stefan Katzen-

beisser. On compiling boolean circuits optimized for secure multi-party compu-
tation. Formal Methods in System Design, 51(2):308–331, 2017.

[3] Design Compiler. Synopsys inc. http:
//www.synopsys.com/Tools/Implementation/RTLSynthesis/DesignCompiler,
2000.

12

http://www.synopsys.com/Tools/Implementation/RTLSynthesis/DesignCompiler
http://www.synopsys.com/Tools/Implementation/RTLSynthesis/DesignCompiler

[4] Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY-a framework for
efficient mixed-protocol secure two-party computation. In NDSS. The Internet
Society, 2015.

[5] Jack Doerner and Abhi Shelat. Scaling oram for secure computation. In CCS.
ACM, 2017.

[6] Martin Franz, Andreas Holzer, Stefan Katzenbeisser, Christian Schallhart, and Hel-
mut Veith. CBMC-GC: An ANSI-C compiler for secure two-party computations.
In Compiler Construction. Springer, 2014.

[7] Shay Gueron, Yehuda Lindell, Ariel Nof, and Benny Pinkas. Fast garbling of
circuits under standard assumptions. In CCS. ACM, 2015.

[8] Wilko Henecka, Stefan Kögl, Ahmad-Reza Sadeghi, Thomas Schneider, and Immo
Wehrenberg. TASTY: Tool for automating secure Two-partY computations. In
CCS. ACM, 2010.

[9] Wilko Henecka and Thomas Schneider. Faster secure two-party computation
with less memory. In ASIACCS. ACM, 2013.

[10] Andreas Holzer, Martin Franz, Stefan Katzenbeisser, and Helmut Veith. Secure
two-party computations in ANSI C. In CCS. ACM, 2012.

[11] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. Faster secure two-party
computation using garbled circuits. In USENIX Security, volume 201, 2011.

[12] Siam U Hussain and Farinaz Koushanfar. Privacy preserving localization for
smart automotive systems. In DAC. ACM, 2016.

[13] C Juvekar, V Vaikuntanathan, and A Chandrakasan. Gazelle: A low latency frame-
work for secure neural network inference. In 27th USENIX Security Symposium
(USENIX Security 18). USENIX Association, 2018.

[14] Florian Kerschbaum. Automatically optimizing secure computation. In CCS.
ACM, 2011.

[15] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR
gates and applications. In ICALP. Springer, 2008.

[16] Benjamin Kreuter, Abhi Shelat, Benjamin Mood, and Kevin RB Butler. PCF: A
portable circuit format for scalable two-party secure computation. In Security.
USENIX, 2013.

[17] Benjamin Kreuter, Abhi Shelat, and Chih-Hao Shen. Billion-gate secure compu-
tation with malicious adversaries. In Security. USENIX, 2012.

[18] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party
computation in the presence of malicious adversaries. In EUROCRYPT. Springer,
2007.

[19] Yehuda Lindell and Benny Pinkas. A proof of security of YaoâĂŹs protocol for
two-party computation. Journal of Cryptology, 22(2):161–188, 2009.

[20] Yehuda Lindell and Benny Pinkas. Secure two-party computation via cut-and-
choose oblivious transfer. Journal of Cryptology, 2012.

[21] Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi. ObliVM:
A programming framework for secure computation. In S&P. IEEE, 2015.

[22] Lior Malka. VMCrypt: modular software architecture for scalable secure compu-
tation. In CCS. ACM, 2011.

[23] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay-secure
two-party computation system. In Security. USENIX, 2004.

[24] Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable privacy-
preserving machine learning. In 2017 38th IEEE Symposium on Security and
Privacy (SP), pages 19–38. IEEE, 2017.

[25] BenjaminMood, Debayan Gupta, Henry Carter, Kevin Butler, and Patrick Traynor.
Frigate: A validated, extensible, and efficient compiler and interpreter for secure
computation. In Euro S&P. IEEE, 2016.

[26] Moni Naor and Benny Pinkas. Computationally secure oblivious transfer. In
Journal of Cryptology. Springer, 2005.

[27] Moni Naor, Benny Pinkas, and Reuban Sumner. Privacy preserving auctions and
mechanism design. In CEC. ACM, 1999.

[28] Annika Paus, Ahmad-Reza Sadeghi, and Thomas Schneider. Practical secure
evaluation of semi-private functions. In International Conference on Applied
Cryptography and Network Security, pages 89–106. Springer, 2009.

[29] Benny Pinkas, Thomas Schneider, Nigel P Smart, and Stephen CWilliams. Secure
two-party computation is practical. In ASIACRYPT. Springer, 2009.

[30] Aseem Rastogi, Matthew A Hammer, and Michael Hicks. WYSTERIA: A pro-
gramming language for generic, mixed-mode multiparty computations. In S&P.
IEEE, 2014.

[31] Aseem Rastogi, Piotr Mardziel, Michael Hicks, and Matthew A Hammer. Knowl-
edge inference for optimizing secure multi-party computation. In Proceedings of
the Eighth ACM SIGPLAN workshop on Programming languages and analysis for
security, pages 3–14. ACM, 2013.

[32] M Sadegh Riazi, Neeraj KR Dantu, LN Vinay Gattu, and Farinaz Koushanfar. Gen-
match: Secure dna compatibility testing. In 2016 IEEE International Symposium
on Hardware Oriented Security and Trust (HOST), pages 248–253. IEEE, 2016.

[33] M Sadegh Riazi, Bita Darvish Rouhani, and Farinaz Koushanfar. Deep learning
on private data. In IEEE Security and Privacy Magazine. IEEE, 2019.

[34] M Sadegh Riazi, Ebrahim M Songhori, and Farinaz Koushanfar. Prisearch: Effi-
cient search on private data. In Design Automation Conference (DAC), 2017 54th
ACM/EDAC/IEEE, pages 1–6. IEEE, 2017.

[35] M Sadegh Riazi, Ebrahim M Songhori, Ahmad-Reza Sadeghi, Thomas Schneider,
and Farinaz Koushanfar. Toward practical secure stable matching. Proceedings

on Privacy Enhancing Technologies, 2017(1):62–78, 2017.
[36] M Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, Ebrahim M Songhori,

Thomas Schneider, and Farinaz Koushanfar. Chameleon: A hybrid secure com-
putation framework for machine learning applications. In Proceedings of the 2018
on Asia Conference on Computer and Communications Security, pages 707–721.
ACM, 2018.

[37] Conor Santifort. Amber ARM-compatible core. OpenCores.org, 2010.
[38] Andrew Sloss, Dominic Symes, and Chris Wright. ARM system developer’s guide:

designing and optimizing system software. Morgan Kaufmann, 2004.
[39] Ebrahim M Songhori, Siam U Hussain, Ahmad-Reza Sadeghi, Thomas Schneider,

and Farinaz Koushanfar. TinyGarble: Highly compressed and scalable sequential
garbled circuits. In S&P. IEEE, 2015.

[40] Ebrahim M Songhori, Shaza Zeitouni, Ghada Dessouky, Thomas Schneider,
Ahmad-Reza Sadeghi, and Farinaz Koushanfar. GarbledCPU: A MIPS processor
for secure computation in hardware. In DAC. IEEE, 2016.

[41] Jack E Volder. The CORDIC trigonometric computing technique. IRE Transactions
on Electronic Computers, (3), 1959.

[42] Xiao Wang, Hubert Chan, and Elaine Shi. Circuit ORAM: On tightness of the
goldreich-ostrovsky lower bound. In CCS. ACM, 2015.

[43] Xiao Wang, S Dov Gordon, Allen McIntosh, and Jonathan Katz. Secure compu-
tation of mips machine code. In European Symposium on Research in Computer
Security, pages 99–117. Springer, 2016.

[44] Xiao Shaun Wang, Yan Huang, TH Hubert Chan, Abhi Shelat, and Elaine Shi.
SCORam: oblivious ram for secure computation. In CCS. ACM, 2014.

[45] A. Yao. How to generate and exchange secrets. In FOCS. IEEE, 1986.
[46] Samee Zahur and David Evans. Obliv-C: A language for extensible data-oblivious

computation. IACR Cryptology ePrint Archive, 2015:1153, 2015.
[47] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole. In

EUROCRYPT. Springer, 2015.
[48] Samee Zahur, Xiao Wang, Mariana Raykova, Adrià Gascón, Jack Doerner, David

Evans, and Jonathan Katz. Revisiting square root ORAM: Efficient random access
in multi-party computation. In S&P. IEEE, 2016.

13

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Security Model
	2.2 Oblivious Transfer
	2.3 Garbled Circuit

	3 SkipGate Algorithm
	3.1 Gate Categories
	3.2 Algorithm
	3.3 Identification of Identical and Inverted Labels
	3.4 Computational Complexity
	3.5 Correctness and Security Proof

	4 ARM2GC
	4.1 Global Flow
	4.2 ARM as a Garbled Processor
	4.3 Effect of SkipGate on ARM2GC
	4.4 Why not Sub-linear Oblivious RAM?

	5 Evaluation
	5.1 Evaluation Setup
	5.2 Benchmark Functions and Metrics
	5.3 Effect of SkipGate on Sequential GC
	5.4 ARM2GC vs HDL Synthesis
	5.5 ARM2GC vs GC Frameworks Supporting High-level Languages
	5.6 Effect of SkipGate on ARM
	5.7 Complex Functions

	6 Related Work
	7 Conclusion
	References

