
Flexible Transformations for Learning Big Data

Azalia Mirhoseini Ebrahim M. Songhori Bita Darvish Rouhani
Farinaz Koushanfar

azalia, ebrahim, bita, farinaz@rice.edu

Electrical and Computer Engineering, Rice University, Houston TX 77005, USA

ABSTRACT
This paper proposes a domain-specific solution for iterative
learning of big and dense (non-sparse) datasets. A large
host of learning algorithms, including linear and regularized
regression techniques, rely on iterative updates on the data
connectivity matrix in order to converge to a solution. The
performance of such algorithms often severely degrade when
it comes to large and dense data. Massive dense datasets
not only induce obligatory large number of arithmetics, but
they also incur unwanted message passing cost across the
processing nodes. Our key observation is that despite the
seemingly dense structures, in many applications, data can
be transformed into a new space where sparse structures be-
come revealed. We propose a scalable data transformation
scheme that enables creating versatile sparse representations
of the data. The transformation can be tuned to benefit the
underlying platform’s cost and constraints. Our evaluations
demonstrate significant improvement in energy usage, run-
time, and memory footprint, within guaranteed user-defined
error bounds.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and alge-
braic manipulation—Algorithms

Keywords
Big and dense data, Sparse factorization, Subspace sam-
pling, Performance optimization

1. INTRODUCTION
Since finding a direct solution to a matrix-based analy-

sis problem requires the (unscalable) matrix inversion, most
contemporary data analysis methods use iterative comput-
ing to converge to a solution [3]. The major bottleneck of
iterative algorithms is the costly operations on the correla-
tion matrix. Let us denote the data matrix by A ∈ Rm×n,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).
SIGMETRICS’15, June 15-19, 2015, Portland, OR, USA.
ACM 978-1-4503-3486-0/15/06.
http://dx.doi.org/10.1145/2745844.2745889.

where n is the total number of samples and m is the num-
ber of features per sample. We denote the correlation matrix
by G ∈ Rn×n, where G = ATA. At each iteration t, the
following process is applied to update a solution vector, x:
xt+1 = Φ(Gxt,xt), where Φ is a lightweight operator deter-
mined by the algorithm. The update is applied iteratively
until convergence is achieved.

The complexity of the update arises from computing the
matrix-vector product Gxt at each step. Computing and
storing G for massive datasets with dense correlations be-
come infeasible as it requires O(n3) arithmetic operations
and O(n2) storage. To circumvent this, only A is stored.
Thus, the Gxt computation is instead done using ATAxt.
In settings where A has to be partitioned across distributed
processing nodes, computing the correlations between data
samples that reside on different nodes incur communication
overhead.

Several classes of fast-growing data, including the image
and video content, contain dense (non-sparse) dependencies,
i.e., a large number of non-zeros in the data correlation ma-
trix. While available approaches such as [5] rely sparsity of
the data connectivity matrix for efficient partitioning, when
data exhibits dense dependencies, it is inherently impossible
to find efficient cuts.

This work aims to address the challenges that arise due to
the large number of arithmetic and message passing oper-
ations required for executing iterative algorithms on mas-
sive and densely correlated data. We propose a tunable
data transformation scheme that enables producing versa-
tile sparse representations of the same dataset, within a
user-defined approximation error. The degree of freedom
in transformation can be leveraged to optimize the perfor-
mance cost of iterative updates in terms of energy usage,
runtime, and memory on the pertinent platform.

2. A FLEXIBLE AND SPARSIFYING DATA
TRANSFORMATION

Here we present our parametric data transformation method-
ology. Our objective is to find an approximate solution to
the following NP hard problem:

min
L,Bm×L,CL×n

‖c‖0 s.t. ‖ai −Bci‖F ≤ δ, for 1 ≤ i ≤ n.

(1)
where ai’s and ci’s are columns of A and C, ‖ · ‖0 measures
the total number of non-zeros, ‖·‖F measures the Frobenius
norm, and δ is an approximation error. Equation 1 naturally
expresses our goal to find sparse transformations of the dense
data.

453



Algorithm 1 : Parametric sparsifying data transfor-
mation

Input: Matrix A ∈ Rm×n, error tolerance δ, and the
maximum number of columns to select L.

Output: A sparse matrix C ∈ RL×n and a dense matrix
B ∈ Rm×L such that ‖ai −Bci‖F ≤ δ for each 1 ≤ i ≤ n.

1. Update B by selecting L columns uniformly at random
from A
2. Normalize columns of B: ‖bi‖2 = 1.
3. For each 1 ≤ i ≤ n, compute ci by applying OMP to
solve Equation 1 within error bound δ: ai −Bci ≤ δ.

Our approach to solve Equation 1 consists of 2 steps.
First matrix B is created by using a random Column-Subset-
Selection (CSS) approach; a set of L columns of A are se-
lected at random to create B. L should be large-enough
such that the error criteria is met. We refer to the general
results on random CSS, provided in [4], for bounds on L
for a given error. Oncer B is formed, Equation 1 becomes
equivalent to a sparse approximation problem. Each column
ci is a sparse approximation of the corresponding column ai,
with respect to B and the user-specified approximation error
δ. We solve this problem using an efficient greedy routine
called Orthogonal Matching Pursuit (OMP) [2].

Sparsity guarantees for C. When a dataset lives in
a union of lower dimensional subspaces, as it is the case
in many large-scale scenarios, each data point corresponds
to a superposition of a few points from its own subspace
[6]. More precisely, let us assume that A lives in a union
of s subspaces of Rn, where each subspace is ki-dimensional
(1 ≤ i ≤ s). Then the columns of A that belong to each
subspace i will be represented by at most ki non-zeros in c.
Note that the low-rank model is an instance of the union-
of-subspace model where s = 1. In Algorithm 1, matrix B
is the collection of all subspaces that A lives in. The OMP
routine greedily approximates each ai, as a superposition of
few columns of B that best represent ai.

Platform-aware tuning of transformation . Once
the transformation is completed, subsequent iterative anal-
ysis on ATA are replaced by (BC)TBC. The sparsity of
C enables efficient partitioning and computation. One can
exploit the existing work in the field of high performance
computing to optimally distribute and apply the updates
on matrices B and C. In particular, if n is much larger
than both m and the number of columns in x, as it is the
case in many large-scale learning problems, the number of
communicated words increases linearly with L [1].

On the other hand, increasing parameter L results in sparser
transformations. The larger sparsity is achieved due to the
higher redundancy in B. Thus, there is a trade-off between
the number of non-zeros (or the cost of computation and the
memory footprint) of the transformed data and the commu-
nication overhead. We can leverage this property to adap-
tively tune the transformation for the target platform.
3. EVALUATIONS

We performed our evaluations on IBM iDataplex com-
puter cluster. Our test datasets include a database of video
frames (size 1764×100000 ) and a database of light-field im-
age patches (size 18496×100000).

Table 1: Performance improvement in terms of number of
floating point operations per iteration and memory usage.

Method Video Light field
Ours (GFLOP-per-iteration) 0.061 0.068

Baseline (GFLOP-per-iteration) 0.227 3.69
Ours (Memory MB) 244.64 275.71

Baseline (Memory MB) 1280.00 14797.96

Tunable sparse representations. We tested Algorithm
1 on light field data by setting δ = 0.1. Figure 1 shows the
average number of non-zeros per column of C as L increases.
At first the number of non-zeros increases with L until the
transformation error criteria is met. Afterwards, increasing
L further sparsifies C. Since L governs the communication
cost, depending on the relative cost of arithmetics and com-
munication on a platform, optimal L can be chosen.

0 1000 2000 3000 4000 5000 6000
40

60

80

100

120

140

160

180

200

220

Number of columns in B (L)

N
u

m
b

er
 o

f 
n

o
n

−
ze

ro
s 

p
er

 c
o

lu
m

n
 o

f 
C

Light Field 18496×100000

 

 

Figure 1: By varying the number of columns in B in our
transformation, various sparsity levels in coefficient matrix
C can be achieved. This property can be used to tune data
representation w.r.t costs of the pertinent platform.

Energy and memory efficiency. Table 1 provides the
cost in terms of number of floating point operations (FLOPs)
per iteration using our approach i.e., (BC)TBCx vs. the
baseline, i.e., ATAx. It also provides the cost in terms of
memory usage using our approach (memory for storing B
and C) vs. the baseline (memory for storing A). The error
is set to δ = 0.1. Since energy usage is highly dependent on
the number of FLOPs, drastic reductions in the number of
FLOPs (e.g., more than 54 times for Light Field data) is an
indication of significant energy performance improvement.

4. REFERENCES
[1] G. Ballard, A. Buluc, J. Demmel, L. Grigori,

B. Lipshitz, O. Schwartz, and S. Toledo.
Communication optimal parallel multiplication of
sparse random matrices. SPAA ’13, pages 222–231.

[2] G. Davis, S. Mallat, and Z. Zhang. Adaptive
time-frequency decompositions. Opt. Engin SPIE,
pages 2183–2191, 1994.

[3] C. Fowlkes et al. Spectral grouping using the nystrom
method. TPAMI, pages 214–225, 2004.

[4] Alex Gittens and Michael Mahoney. Revisiting the
nystrom method for improved large-scale machine
learning. JMLR., 28(3):567–575, 2013.

[5] Y. Low et al. GraphLab: A new parallel framework for
machine learning. UAI, pages 340–349, 2010.

[6] A. Mirhoseini, E. Dyer, E. Songhori, E. Baraniuk, and
F. Koushanfar. Rankmap: A platform-aware framework
for distributed learning from dense datasets. In
arXiv:1503.08169, 2015.

454




