
N-Variant IC Design: Methodology and Applications

Yousra Alkabani
CS Dept., Rice University
6100 Main St., MS-132

Houston, TX 77005
yousra@rice.edu

Farinaz Koushanfar
ECE and CS Dept(s)., Rice University

6100 Main St., MS-380
Houston, TX 77005
farinaz@rice.edu

ABSTRACT
We propose the first method for designing N-variant sequential cir-
cuits. The flexibility provided by the N-variants enables a num-
ber of important tasks, including IP protection, IP metering, secu-
rity, design optimization, self-adaptation and fault-tolerance. The
method is based on extending the finite state machine (FSM) of the
design to include multiple variants of the same design specifica-
tion. The state transitions are managed by added signals that may
come from various triggers depending on the target application. We
devise an algorithm for implementing the N-variant IC design. We
discuss the necessary manipulations of the added signals that would
facilitate the various tasks. The key advantage to integrating the
heterogeneity in the functional specification of the design is that
we can configure the variants during or post-manufacturing, but
removal, extraction or deletion of the variants is not viable. Exper-
imental results on benchmark circuits demonstrate that the method
can be automatically and efficiently implemented. Because of its
lightweight, N-variant design is particularly well-suited for secur-
ing embedded systems. As a proof-of-concept, we implement the
N-variant method for content protection in portable media players,
e.g., iPod. We discuss how the N-variant design methodology read-
ily enables new digital rights management methods.

Categories and Subject Descriptors
B.6.2 [Integrated Circuits]: Design Aids; K.6.5 [Security and
Protection]: Physical Security

General Terms
Design, Security

Keywords
N-variant Design, Digital Rights Management, Physical Security

1. INTRODUCTION
N-variant design is the generation of N ≥ 2 realizations of

the same initial design description. The advantage of the tech-
nique is that it provides improved flexibility, robustness, attack
resiliency, and design diversity. The strength and usefulness of
N-variant designs was previously demonstrated for programs [6],

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2008, June 8–13, 2008, Anaheim, California, USA.
Copyright 2008 ACM ACM 978-1-60558-115-6/08/0006 ...5.00.

virtual machines [10], and for achieving architectural heterogene-
ity [10]. While the method was initially intended for providing
fault-tolerance, recent applications in security of computer systems,
software and data has amplified its importance. Many attacks that
take advantage of the specific and stationary nature of the underly-
ing platform, may be eliminated by using N-variants [6, 10].

We propose the first methodology for designing N-variant ICs.
The method works at the functional specification level, or by scripts
that automatically perform pre-synthesis alterations. We construct
a single hardware design consisting of multiple variants that are
planned to have several exploitation sets. Note that it is also possi-
ble to do N-variant design post-synthesis. The drawback is that the
design would become vulnerable to removal attacks. The advan-
tage of pre-synthesis alternation is that all of the variants become
an integral part of the pertinent design’s functionality, making the
removal attack detrimental to the whole structure.

N-variant IC design has a number of important applications.
(i) Hardware IP protection and digital rights management: New
semiconductor business models can be enabled by the N-variant
design, e.g., different versions of one design can be sold to various
vendors, enabling an automatic way to trace the ICs.
(ii) Usage and content metering: Alternation of the variants can be
used for enumerating the usage of IC components that run software/
media files, or in conjunction with unclonable chip IDs for metering
the usage of an ICs.
(iii) Security: There is a need to prevent the exploits that target a
homogeneous design from working on all the ICs [10]. Selection
of different variants provides an effective countermeasure against
the attacks.
(iv) Post-silicon optimization: Because of the manufacturing vari-
ability, for each IC, the designer can use the testing results to select
the variant that has the best power/delay characteristics [3, 14].
(v) Self-adaptation: Due to the impact of variability in operational
conditions, e.g., aging, the IC can be designed such that it can adapt
its structure over time.
(vi) fault-tolerance: The inherent redundancy provided by N-
variants enables fault-tolerance.

Integration of N-variants at the functional level is done by alter-
ing the FSM and adding several states to it. By managing (control-
ling) the state-transitions inputs, one would be able to select differ-
ent variants of the design. The management inputs may come from
various triggers, that depend on the target task for the N-variant de-
sign. We discuss in detail how the management may be altered for
the various applications that we are considering.

The key advantage of using FSM is that it is not extractable from
the synthesized design. Thus, even for a party who has access to
the synthesized hardware IP, changing the FSM or extracting the
original single-variant design would need an effort equivalent to

7

546

29.4



redoing all the stages of design and implementation. For our pur-
poses, the FSM can be safely assumed inextricable. Another im-
portant benefit of FSM is that certain aspects of FSM are inexpen-
sively verifiable post-silicon. The inextricability and verifiability
properties of the FSM were previously used for watermarking and
for hiding information inside the design, and for remote activation
and disabling [1, 2, 14, 15, 17, 20]. As it was shown in the context
of watermarking and IC activation/disabling [1, 2, 12], careful con-
straint manipulation and don’t care planning can greatly reduce the
overhead of FSM modifications. The new method is particularly
well-suited for lightweight embedded systems applications. This
is because the N-variant design enables lightweight mechanisms
for protection and security of IPs, software and content. The over-
head of implementing traditional cryptographic protocols is huge,
often overwhelming the constrained resources of an embedded sys-
tem [19]. As a proof-of-concept, we demonstrate application of
N-variant IC design for content usage metering of portable multi-
media devices with an embedded MPEG compression module.

1.1 Motivational example
Figure 1 illustrates a motivational example, where the FSM of

the design is shown by a state transition graph (STG) that has four
states: s0, s1, s2, and s3. This FSM is the first variant. We repli-
cate this design three times to have: s′1, s

′
2, s

′
3, and s′4 as the first

copy (the second variant), s′′1 , s′′2 , s′′3 , and s′′4 as the second copy
(the third variant), and s′′′1 , s′′′2 , s′′′3 , and s′′′4 as the third copy (the
fourth variant). Thus, we construct a 4-variant circuit. The different
copies can share FFs at the synthesis step to reduce the overhead.
By careful state assignment, one can ensure that the FFs needed for
each variant to function properly are different in at least one FF.
This way, even if a FF is corrupted, there are still other copies that
can function properly. In Figure 1, we show an example of how
the FFs can be shared between the different variants. Assume that
we implement the design using 4 FFs. The four FFs denoted by
F1, F2, F3, and F4 are shown in front of each variant. The FFs in
white affect the functionality of the variant, while the FFs in gray
do not affect the functionality of the variant (although they can keep
flipping all the time for obfuscation reasons depending on the ap-
plication). For instance, the first variant can use F1, and F2 shown
in white, while F3, and F4 do not affect its functionality. However,
the second variant is affected by F1 and F4. Thus, if F2 is cor-
rupted, the first variant will not function properly, but the second
will. For the circuit to properly function, it is enough to have one
correctly functional variant selected. However, depending on the
application, we can choose to switch between different variants, or
to prefer a variant over the other based on their performances. Thus,
the selection function shown in Figure 1 is application dependent
as we discuss in Section 4.

S0 S1 S2 S3

S'0 S'1 S'2 S'3

S''0 S''1 S''2 S''3

S'''0 S'''1 S'''2 S'''3

F1 F2 F3 F4

F1 F2 F3 F4

F1 F2 F3 F4

F1 F2 F3 F4

select

Figure 1: A 4-variant Design

1.2 Paper organization
In the next section, we discuss the background and related work

along the lines of FSM and the N-variant concept. In Section 3 we
devise an algorithm for efficient integration of the N-variants. Sec-
tion 4 demonstrates how the variant selection inputs can be man-
aged to facilitate various applications. Experimental results evalu-
ating the overhead of the method on standard benchmarks are pre-
sented in Section 5. The proof-of-concept implementation for me-
tering multimedia files is also reported. Section 6 concludes the
paper and outlines a number of future research directions.

2. BACKGROUND
We describe the background and related literature on FSM and

N-variant systems that has influenced and inspired our work.

2.1 FSM
A FSM is a dynamic discrete system with limited number of

states that maps input sequences into output sequences. It can be
used to represent a sequential function, e.g., sequential circuits. A
FSM is typically defined by a 6-tuple M=(Σ,Δ,Q,q0,δ,λ), where

- Σ �= ∅ is a finite set of input alphabets;
- Δ �= ∅ is a finite set of output alphabets;
- Q={q0,q1,. . . }�= ∅ is a bounded set of states;
- q0 ⊂ Q is the set of initial states;
- δ (q, a) is transition function on input a and set Q × Σ → Q;
- λ (q, a) is output function for input a and set Q × Σ → Δ.
The STG is used to represent the state transitions and in-

put/output relations of the FSM; nodes correspond to states and
edges define the input/output conditions for state transitions.

FSMs are used for information hiding and watermarking pur-
poses. Oliveira proposed to alter the STG such that a signature
is mapped to a spacial topological property in the sequence of
states traversed by a sequence of inputs [15]. Yuan and Qu ex-
ploited the existence of redundant transitions and manipulate them
to hide information inside the FSM without altering the minimized
FSM [20]. Alkabani et al. created the first method for remote
unique enabling/disabling of ICs by use a combination of physi-
cally unclonable functions and FSM state manipulations [1,2]. The
lock is interleaved with combinational and sequential transitions
and can be used for enabling/disabling of the IC. The unlocking is
done by sequence of inputs that can only be generated by knowing
the FSM structure.

The classic way for fault-tolerance FSM design is triple modular
redundancy (TMR), where three copies of FSM are concurrently
run and the correct output value is determined by voting [16]. Even
though TMR may be viewed as a basic N-variant design method,
we emphasize that the new N-variant methodology is not a simple
replication of the FSMs. Instead, the variants are elegantly inter-
wind within the original design. N-variant design has applications
that the traditional fault-tolerant design methods do not support.

Our N-variant design algorithm is devised to have a low-
overhead. A class of methods that is relevant to our work is state
assignment and state minimization of large FSM networks [7, 11].
The concepts and methods used in FSM minimization may help to
even lower the overhead of N-variant designs in the future.

2.2 N-variant approach
N-version software development was introduced as early as 1968

[13]. The goal was to achieve fault-tolerance [4, 18]. N-versioning
collects N copies of the target software written by different pro-
grammers and then runs them in parallel, using the redundancy in
the results to achieve fault-tolerance. N-versioning is different from
N-variant since N-variant systems include multiple copies within

547



the same design that appear different. So far, the main usage of N-
variants has been for security purposes [6,10]. The motivating idea
is that most systems are homogeneous and the same exploit can
attack all instances of the system. The specific machine-level char-
acteristics of the attacked computer is used by the binary exploits,
e.g, byte order, calling conventions, program load addresses, etc. If
the system is not exactly the same, the exploit would not be able to
adjust itself and the attack will be halted.

Achieving a heterogeneous computer system by using random-
ization was first introduced by Forrest et al [8]. Cox et al. present
an architectural framework that systematically uses automated di-
versity that provides detection and disruption of a large class of
attacks [6]. Holland et al. extended the idea of achieving het-
erogeneity by generating the architecture-dependent parts of kernel
and standard C library from machine description [10]. Their ap-
proach successfully suppresses the risks of code injection attacks
and state corruption attacks.

As we have mentioned in Section 1, N-variant IC design can
enable many more tasks than just security and attack resiliency.
Perhaps the most interesting applications are in the domain of IP
protection and enabling new business models, and for post-silicon
optimization and self-adaptations of the ICs. Furthermore, because
the N-variants are embedded into the hardware, the overhead is
smaller than embedding them into the virtual machine and/or the
architecture. The low overhead of the N-variant IC renders it suit-
able for embedded systems applications.

3. N-VARIANT IC DESIGN
In this section we discuss how the N-variant circuit can be de-

signed. Figure 2 demonstrates the flow of our design. The imple-
mentation steps can be summarized as follows:

1. A single copy of the FSM is implemented as a group of FFs
connected to the input and output through combinational cir-
cuits logic1 and logic2 respectively, as shown in Figure 2(a).

2. Modify the FSM as follows (Figure 2(b)):

(a) Select the parameter m representing the number of
replications of the FFs in the circuit.

(b) Partition logic1 into logic1a and logic1b and replicate
logic1a for m times.

(c) Partition logic2 into logic2a and logic2b and replicate
logic1a for m times.

(d) Design the obfuscation logic and the selection logic to
maintain the circuit’s correct functionality. The obfus-
cation logic is implemented at the input side and is used
to distinguish between different variants, and to gen-
erate dummy values in the unused FFs. The selection
logic is used at the output side to select the output of the
target variant. Note that when a variant is not selected
it does not have to generate correct outputs.

Selection of the number of replications and the way the combi-
national circuits are partitioned, form the state-space of all possible
implementations. Each choice requires a minimal complexity of
the obfuscation and selection logics. Note that the choice is also af-
fected by the application targeted by the N-variant design method.

It is clear that the overhead of the implementation varies greatly
with the choice of m, the partitioning of the combinational cir-
cuit, and the complexity of both the obfuscation and selection logic
blocks. The area and power overheads of the methods are affected
mainly by m, and by the partitioning of the combinational cir-
cuits. The delay is only affected by the selection and obfuscation

FFs

logic1

logic2

input

output

(a) Original FSM

FFs(1)

logic1a

logic2a

input

output

(b) N-variant FSM

FFs(2) FFs(m)...

logic1a logic1a

obfuscation
logic

(1) (2) (m)

logic1b

logic2a logic2a

selection
logic selection

key

logic2b

logicia + logicib = logici

logic(i) is a copy of
logic

(1) (2) (m)

Figure 2: Design of an N-variant circuit.

logic. At one extreme, one can set m = N , logicia = logici,
and logicib = ∅, while implementing the selection logic as a mul-
tiplexer and discarding the obfuscation logic. This configuration
produces the highest area and power overheads, and the lowest
delay. At the other extreme, one can set m = 1, logicia = ∅,
logicib = logici. This leads to an obfuscated circuit, and produces
the lowest area and power overheads, and the highest delays. The
potential impact of each of the possible design parameters is as fol-
lows.

• FFs. The FFs represent the memory for the FSM states, they can
be replicated m times where m ≥ 1; m = 1 means the FFs are
all shared and this removes a big part of redundancy in our imple-
mentation. However, the method can still have multiple variants by
manipulating the logic blocks.

• Logic1. This circuit component represents the combinational part
of the circuit at the input side. It is divided into two parts: logic1a

and logic1b. Logic1a is to be replicated m times, and logic1b is
shared. Increasing the size of logic1a leads to larger area and power
overheads. However, it does not affect the delay overhead. Despite
the introduction of more area and power overheads, it can be useful
for applications with timing constraint.

• Logic2. This circuit represents the combinational part of the cir-
cuit at the output of the FFs. It is divided into two parts: logic2a

and logic2b. Logic2a is to be replicated m times, and logic2b is
shared. Just like the case in logic1a, increasing the size of logic2a

leads to larger area and power overheads and can be useful for ap-
plications targeting performance improvement and fault-tolerance.

• Obfuscation logic. The obfuscation is used to adjust the inputs
for different variants. The more FFs are shared between variants,
the more complex this part will be. However, in cases where few
FFs are shared, this part is used to generate dummy values in the
unused FFs. This can be useful for security applications.

• Selection logic. This block is responsible for ensuring that the
correct output from the target variant is selected. In case of many
FF replications, it can be simply implemented as a multiplexer.
However, as the number of shared FFs increases, it becomes in-

548



creasingly important to interleave this block with the obfuscation
logic to guarantee that the correct outputs are obtained regardless
of the selected variant.

The nature of the original circuit also affects the significance
of the overhead. For instance, if the combinational logic is very
small in area, power, and delay, even the slightest replications and
the simplest obfuscation and selection logic will yield a signifi-
cant overhead compared to the original one. Note that the area
and power overhead of an FSM (representing the control part of a
system) is extremely small compared to the overall area and power
overhead of the system.

4. APPLICATION-SPECIFIC MANAGE-
MENT OF THE N-VARIANTS

In this section, we describe a number of management methods
that can enable each of the applications described in Section 1. The
variant selection contains the following components and structures:
• Trigger. A trigger prompts selection of a new variant. It may
come from various sources, including the clock signals, an internal
counter, a sequence of inputs, or an external signal.
• Storage. The memory can be used in case selection of a variant
is dictated by a stored key, or in case a counter should save its state
in presence of rests. Also, many binary attacks may exploit a fixed
memory address. To defend against this attack, all or some parts of
the memory needs to by duplicated.
• Driver. The driver uploads the new variant in case a trigger is
activated. A driver may be as simple as a multiplexer uploading the
variant selection key from a stored location, or it may be a driver
FSM, e.g., an obfuscated counter.

The above components can be used in various ways to manage
the variant selection suited for a particular application. A few ex-
amples are as follows.
(i) Hardware IP protection and digital rights management. An IC
vendor could configure its chips by using a fixed key specific to
each customer. This provides a new mechanism to trace back the
ICs in the supply chain. Also, many existing hardware IP protection
methods can be readily used in N-variant settings. For example, the
sequence of traversal among a few variants or within a variant could
be utilized as a watermark or for hiding information [15,20]. As an-
other example, the N-variant structure could be integrated with the
unique random number generated on each chip, for fingerprinting
or locking the state transitions by the manufacturer [1, 2].
(ii) Usage and content metering. The N-variants can be used to
enforce licensing agreement for the hardware, software, or content
usage. Once the license agreement term is over, the IC would enter
a nonfunctional state. The IP rights owner is the only entity that can
load a new functional variant if a new license is obtained. A trigger
by a clock or an internal counter can be used to save the number
of uses or the time constraints. In case a counter is used, the states
should be saved in an on-chip nonvolatile memory so the chip’s re-
set would not affect the usage metering. Similar triggers were used
for licensing of FPGA IPs [5], where it was noted that the trigger is
vulnerable to memory reset/clock reset attacks. One possible coun-
termeasure against this attack is to randomize the counter, so that
resetting to zero would not traverse to the zero usage state. Many
other counter obfuscation methods are possible. For example, one
may initialize the counter by using a PUF, so different configura-
tions will be needed depending on the unique IDs of each chip.
(iii) Security. The system could be made heterogeneous by fre-
quently alternating the FSM variant [10]. For example, in case of
exploits that use a fixed memory address, the memory can be dupli-
cated creating a master and a slave copy. Every time a new variant

is selected, the master and the slave copies would switch. The slave
would copy its content from the master. If an attack exploits an ad-
dress on the master copy, it would halt once the master copy is
altered.
(iv) Post-silicon optimization. Because of the variability in CMOS
technology, the variant with the best power or delay perfor-
mance would be different on each IC. A spectrum of new post-
manufacturing optimizations can be enabled by using the test data
to determine the variant that has the best performance on each IC.
For example, one may design the chips to have the maximum pos-
sible frequency, by selecting low feature sizes for the gates. Due
to variability, some of the delays would be longer than planned,
slowing down a few critical paths.
(v) Self-adaptation. The variants could be strategically uploaded
using an offline or online monitoring method that manages the up-
load based on a certain target. For example, to be resilient against
aging, one can equalize the amount of usage of the various compo-
nents. Offline simulation of randomly selected variants can deter-
mine which components are used more in one variant. The variants
with the largest difference in their usage patterns may be periodi-
cally loaded to equalize the aging effect.
(vi) fault-tolerance. The flexibility and redundancy of the N-variant
design can be utilized for providing fault-tolerance. For example, if
a FF is shown to be faulty during the test phase, the configurations
that do not use this FF will be uploaded. The fault-tolerance can
be implemented in more sophisticated ways, by adding a monitor-
ing mechanism. As an example, a BIST structure can be included
which periodically tests the circuit for faults due to aging, NBTI, or
HCI effects. The correct variants could be managed accordingly.

5. EXPERIMENTAL RESULTS
In this section, we implement the N-variant method described in

section 3 on benchmark designs and evaluate its performance. A
program is written in C to generate N-variants for each design. The
Berkeley SIS tool is used to simulate the results and to estimate the
overhead. In the first subsection, we show the experimental results
for applying the method on standard MCNC’91 benchmarks. In the
second subsection, we demonstrate a DCT example as a proof-of-
concept for applying the method to embedded multimedia applica-
tions. All the resulting circuits are mapped to the MCNC library.

5.1 Implementation of the N-variant method
Figure 3 shows an implementation of the N-variant method for

m = 2. Our design targets embedding at least one redundant com-
ponent for each part, while maintaining low area, power, and delay
overheads. We present the results for m = 2 and m = 4 that trans-
late to doubling and quadrupling the number of FFs respectively.
The obfuscation logic is implemented as a block of XOR gates that
place different values in the unused FFs for each variant. The se-
lection logic is implemented as a multiplexer block. The number
of variants generated by this implementation for a circuit with k
FFs is 2k for m = 2, and is 4k for m = 4. Our selection of each
parameter of the N-variant design (see Section 3) and the impact of
the choice on the target applications are as follows:
• FFs. We selected m = 2 and m = 4. Selecting m = 2 ensures
that the scheme has at least one spare FF for each variant; m = 4
provides more redundancy.
• Logic1. We selected Logic1a = ∅, and logic1b=logic1. The
choices are made to reduce the area and power overheads. How-
ever, fault-tolerance and post-silicon optimization are now only de-
pendent on FF redundancies.
• Logic2. We devised the following parameters: Logic2a = ∅, and
logic2b=logic2. The selection is made to reduce the area and to

549



reduce the delay and power overhead. Again, fault-tolerance and
post-silicon optimization are only dependent on FFs.
• Obfuscation logic. For m = 2 and m = 4, only a half, or a quar-
ter of the FFs are shared respectively. We select the obfuscation
function to be a block of XOR gates that generate dummy values in
the unused FFs. We limit the maximum number of variants to be 2k

(for m = 2) and 4k (for m = 4) to keep the function simple and to
constrain the delay overhead. Note that some of the variants can be
reserved as trap non-functional FSMs for security and IP protection
applications.
• Selection logic. This part is implemented as a multiplexer and is
kept simple to avoid large delay overheads.

Note that the parameter choices used in one implementation are
driven by the designer’s target application. The real results may be
affected by many factors such as the original shape of the circuit,
the gate library used, and different optimizations done on the circuit
after modification.

FFs(1)

input

output

FFs(2)

logic1

selection
key

logic2

XOR

Multiplexer

Figure 3: Implementation choice for the experiments.

Tables 1 and 2 show the respective area, power, and delay over-
heads for m = 2 and m = 4. The evaluations on the used bench-
marks show a maximum area and power overhead of 20% and 19%
respectively, while the delay overhead was at most 17% for m = 2.
The area and power overhead for m = 4 goes up to 48% and 62%,
and the maximum delay overhead is 21%. It should be noted that
the benchmarks with the highest overhead are very small. It is also
interesting to note that sometimes the overhead is negative (the cir-
cuit is improved) because the resulting circuit maps to fewer gates
in the MCNC library. The average area overhead is -0.65% and
12% for m = 2 and m = 4. The average power overhead increased
from -3% for m = 2 to 15% when m = 4. As expected the av-
erage delay overhead did not change by increasing m; it remained
10% in both cases for the evaluated benchmarks. All modifications
to the circuits are done on the netlist before mapping. The relative
values are more important than the absolute values as the values in
the library can be scaled down.

It is worth noting here that the delay overhead is the only
important metric in real designs. This is because the FSM which
constitutes the control part of the design is typically only a small
part of the design, significantly less than 1% of the power/area [9].
Thus, even if the FSM’s area or power is doubled, it will not
significantly affect the overall design.

5.2 Embedded multimedia application
We report the results of implementing the N-variant method

for content usage metering for embedded multimedia applications.
The key observation that facilitates ultra-low overhead implementa-
tion is that the N-variants do not need to be instrumented in all parts

Original m=2 m=4
BM PI PO FFs Area Area % Area %

dk16 2 3 5 461 482 4.6 535 16.1
keyb 7 2 5 461 490 6.3 535 16.1

planet 7 19 6 887 914 3.0 975 9.9
planet1 7 19 6 887 914 3.0 975 9.9

pma 8 8 5 346 382 10.4 419 21.1
s1488 8 19 6 880 915 4.0 973 10.6
s208 11 2 5 148 178 20.3 219 48.0
s420 19 2 5 148 151 2.0 191 29.1
s820 18 19 5 429 256 -40.3 296 -31.0
s832 18 19 5 427 271 -36.5 316 -26.0
styr 9 10 5 633 662 4.6 716 13.1
tma 7 6 5 287 318 10.8 362 26.1

Table 1: Area overhead of the N-variants implementation.

Orig. m = 2 % m = 4 % m = 8 %
Area 821 871 6.1 955 16.3 1117 36.1

Power 2946 3084 4.7 3490 18.5 4198 42.5
Delay 123.8 143 15.5 140 13.1 139.7 12.8

Table 3: The overhead for 29-variants (m = 2), 218-variants
(m = 4), and 236-variants (m = 8) DCT.

of the design; only the critical parts of the design can be strate-
gically selected and augmented. In our multimedia example, we
implement N-variants in the DCT part of the design, the essential
component for audio, image, and video signal processing. Figure
4 shows a typical MPEG video compression flow which contains
both DCT and IDCT components.

Motion

Estimation

Motion

Compensation

Prev. Frame

Buffer
IDCT

Inverse 

Quantization

DCT Quantization

VLC 

Encoding

+

-

Motion

Vector
Control

Mode

Control

0

Input Video

Compressed

Video Stream

Figure 4: Flow of MPEG video compression flow.

Table 3 shows the results for applying the implementation de-
scribed above to the DCT control circuit. The original DCT cir-
cuit has 9 FFs. We evaluated N-variant implementations with 29-
variants (m = 2), 218-variants (m = 4), and 236-variants (m = 8).
The area, power, and delay overheads for m = 2 are 6%, 5%
and 15.5%, respectively. Changing m and keeping the obfusca-
tion and selection logic the same, has a significant impact on the
area and power overheads. For m = 4 the area and power over-
heads increase to 16% and 18%, and for m = 8 the area and power
overheads reach 36% and 42%. However, the change in the delay
overhead is insignificant.

6. CONCLUSION
We introduce N-variant design methodology, a novel design

method that creates N ≥ 2 copies of the same design on one
IC. The strength and usefulness of N-variant design was previously
shown for systems, software, and architectural components. How-
ever, no scheme for generating N-variant ICs was introduced, be-

550



Original m=2 m=4
BM Power Delay Power % Delay % Power % Delay %

dk16 1649.8 97.7 1712 3.8 106.6 9.1 1935.1 17.3 107.6 10.1
keyb 1546.5 61.5 1635.5 5.8 67.6 9.9 1837.3 18.8 68.4 11.2

planet 3103.5 187.9 3156 1.7 219.4 16.8 3471.1 11.8 195.6 4.1
planet1 3103.5 187.9 3156 1.7 219.4 16.8 3471.1 11.8 195.6 4.1

pma 1250.3 61 1309.8 4.8 67.9 11.3 1550.4 24.0 73.4 20.3
s1488 3007.3 134.9 3088.7 2.7 152.7 13.2 3378.3 12.3 144.8 7.3
s208 480.4 25.4 573.6 19.4 26.9 5.9 779.1 62.2 30.9 21.7
s420 480.4 25.4 462.9 -3.6 26.9 5.9 667.1 38.9 30.5 20.1
s820 1423.9 33.7 790.7 -44.5 36 6.8 1007.9 -29.2 31.8 -5.6
s832 1445.1 33.6 855.4 -40.8 36.7 9.2 1089.9 -24.6 36.8 9.5
styr 2170.2 128.2 2272 4.7 144.9 13.0 2470.6 13.8 134.9 5.2
tma 989.3 64.8 1062.1 7.4 71.1 9.7 1287.9 30.2 72.7 12.2

Table 2: Power and delay overheads of the N-variant implementation.

yond simple replications for fault-tolerance. We devise an imple-
mentation algorithm that works by extending the FSM such that it
would include multiple variants of the same design. We demon-
strate how the N-variants enable a number of important applica-
tions, including hardware and content IP protection, IP metering,
security, design optimization and self-adaptation. We also discuss
how the input signals could be managed for each target applica-
tion. The experimental results on benchmark circuits demonstrate
the efficiency of the algorithm in terms of area, power and delay.
We also present a proof-of-concept implementation of N-variant
approach on MPEG decoders by only manipulating one of its cir-
cuit component, namely DCT. Experimental evaluations shows the
suitability of the method for embedded systems applications.

The N-variant design approach has a great potential to impact
various applications that lay the ground for future research. Po-
tential research directions include implementing the method on
ICs, careful development of the digital rights management methods
that exploit the N-variants as the underlying mechanisms, finding
more efficient implementation methods, devising on-chip monitor-
ing mechanisms so that the N-variants could be automatically used
for self-adaptation, and design or implementation of post-silicon
optimization methods that exploit the multiplicity of the variants.
Last but not least, better identification and classification of possible
attacks against the introduced security and protection mechanisms,
particularly those for monitoring the vulnerability of the system
against the binary attacks must be performed.

Acknowledgment
This work is partly supported by the Defense Advanced Research
Projects Agency (DARPA)/MTO Young Faculty Award (YFA),
grant number W911NF-07-1-0198, and by the National Science
Foundation (NSF), grant number 0716674.

7. REFERENCES
[1] Y. Alkabani and F. Koushanfar. Active hardware metering for

intellectual property protection and security. In USENIX
Security, pages 291–306, 2007.

[2] Y. Alkabani, F. Koushanfar, and M. Potkonjak. Remote
activation of ICs for piracy prevention and digital right
management. In ICCAD, 2007.

[3] Y. Alkabani, T. Massey, F. Koushanfar, and M. Potkonjak.
Input vector control for postsilicon leakage current
minimization in the presence of manufacturing variability. In
DAC, 2008.

[4] A. Avizienis. The N-version approach to fault-tolerant
software. IEEE Trans. on Software Engineering,

11(12):1491–1501, 1985.
[5] N. Couture and K. Kent. Periodic licensing of FPGA based

intellectual property. In FPT, pages 357–360, 2006.
[6] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu,

J. Davidson, J. Knight, A. Nguyen-Tuong, and J. Hiser.
N-variant systems: A secretless framework for security
through diversity. In USENIX Security, pages 105–120, 2007.

[7] S. Devadas. Approaches to multi-level sequential logic
synthesis. In DAC, pages 270–276, 1989.

[8] S. Forrest, A. Somayaji, and D. Ackley. Building diverse
computer systems. In hotOS, page 67, 1997.

[9] J.L. Hennessy and D.A. Patterson. Computer architecture: a
quantitative approach. Morgan Kaufmann Publishers, 1996.

[10] D. Holland, A. Lim, and M. Seltzer. An architecture a day
keeps the hacker away. SIGARCH Computer Architecture
News, 33(1):34–41, 2005.

[11] T. Kam, T. Villa, R. Brayton, and
A. Sangiovanni-Vincentelli. A fully implicit algorithm for
exact state minimization. In DAC, pages 684–690, 1994.

[12] D. Kirovski and M. Potkonjak. Local watermarks:
Methodology and application on behavioral synthesis. IEEE
Trans. on CAD, 22(9):1277–1283, 2003.

[13] K. Knowlton. A combination hardware-software debugging
system. IEEE Trans. on Computers, 17(1):81–86, 1968.

[14] F. Koushanfar and M. Potkonjak. CAD-based security,
cryptography, and digital rights management. In DAC, pages
268–269, 2007.

[15] A. Oliveira. Techniques for the creation of digital
watermarks in sequential circuit designs. IEEE Trans. on
CAD, 20(9):1101–1117, 2001.

[16] S. Pontarelli, G. Cardarilli, A. Malvoni, M. Ottavi, M. Re,
and A. Salsano. System-on-chip oriented fault-tolerant
sequential systemsimplementation methodology. In DFT,
pages 455–460, 2001.

[17] G. Qu and M. Potkonjak. Intellectual Property Protection in
VLSI Design. Kluwer, 2003.

[18] B. Randell. System structure for software fault tolerance.
Software Engineering, 1(2):221–232, 1975.

[19] S. Ravi, A. Raghunathan, P. Kocher, and S. Hattangady.
Security in embedded systems: Design challenges. ACM
Trans. on Embedded Computing Systems, 3(3):461–491,
2004.

[20] L. Yuan and G. Qu. Information hiding in finite state
machine. In Information Hiding, pages 340–354, 2004.

551


