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ABSTRACT
Deep Neural Networks (DNNs) are a set of powerful yet
computationally complex learning mechanisms that are pro-
jected to dominate various artificial intelligence and massive
data analytic domains. Physical viability, such as timing,
memory, or energy efficiency, are standing challenges in re-
alizing the true potential of DNNs. We propose DeLight, a
set of novel methodologies which aim to bring physical con-
straints as design parameters in the training and execution
of DNN architectures. We use physical profiling to bound
the network size in accordance to the pertinent platform’s
characteristics. An automated customization methodology
is proposed to adaptively conform the DNN configurations
to meet the characterization of the underlying hardware
while minimally affecting the inference accuracy. The key to
our approach is a new content- and resource-aware transfor-
mation of data to a lower-dimensional embedding by which
learning the correlation between data samples requires sig-
nificantly smaller number of neurons. We leverage the per-
formance gain achieved as a result of the data transformation
to enable the training of multiple DNN architectures that
can be aggregated to further boost the inference accuracy.
An accompanying API is also developed, which can be used
for rapid prototyping of an arbitrary DNN application cus-
tomized to the platform. Proof-of concept evaluations for
deployment of different imaging, audio, and smart-sensing
applications demonstrate up to 100-fold performance im-
provement compared to the state-of-the-art DNN solutions.

1. INTRODUCTION
Deep learning (a.k.a., deep neural network) has provided

a paradigm shift in our ability to comprehend raw data by
going beyond traditional linear and polynomial learning ap-
proaches [1]. Despite the powerful learning capabilities of
deep learning algorithms, the computational overhead asso-
ciated with DNN models hinders their applicability in re-
source constrained settings.

There are several advantages in devising resource efficient
deep learning methodologies: (i) It benefits scaling of DNN
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models by maximizing the number of parameters that can be
trained within the limits of a given computational or timing
budget. (ii) It enables on-chip processing of sensor data ac-
quired on portable embedded platforms such as autonomous
vehicles, smart phones, and wearables while evading the re-
quirement to offload personal content to the clouds. (iii) It
empowers deployment of several DNN configurations within
the confine of the underlying resource provisioning to em-
pirically identify the best model.

We propose DeLight, an end-to-end learning framework
that enables simultaneous training and execution of DNN
models customized to the pertinent resource provisioning
[4]. The resource efficiency of DNN training and execution
is explicitly governed by the number of neurons per layer of
a DNN architecture. Traditionally, the input layer size of
a DNN model is dictated by the feature space size of the
incoming data measurements. DeLight proposes the use of
a new context- and resource-aware data projection as the
primary step to reduce the dimensionality of the input layer
of DNNs customized to platform resources and constraints.
Our approach subsequently shrinks the dimensionality of the
overall DNN model, resulting in significant cost reduction
while delivering the same inference accuracy.

The proposed data projection is a pre-processing step that
adaptively maps the stream of input data to a correspond-
ing ensemble of lower-dimensional subspaces. The mapping
highlights the most informative portions of the data, shrink-
ing the DNN training and execution workload. Our ap-
proach leverages the degree of freedom in producing several
possible projection subspaces to enable customization with
respect to the underlying physical constraints. The achieved
resource efficiency in DeLight framework enables concurrent
training of multiple DNN topologies which can be combined
together to further boost the inference accuracy while ad-
hering to the physical platform resources and constraints.

2. RELATED WORK
The existing DNN realizations for resource-limited plat-

forms are mostly cloud-based models that provide, for exam-
ple, speech and object recognition in mobile commercial ser-
vices [1]. A number of earlier works have focused on applying
sparsity regularization techniques to reduce the number of
parameters in a DNN model [2] or using approximate com-
puting for minimizing the energy cost of evaluating DNNs
[3]. Although these approaches yield significant performance
improvement in executing DNNs, they do not explicitly op-
timize physical performance metrics for training deep neural
networks as they are mainly post-processing techniques that
are adopted after the DNN model has been fully trained. To



the best of our knowledge, DeLight is the first to propose
an automated pre-processing approach to customize both
training and execution of DNNs while optimizing the result-
ing physical resource consumption on the target platform.

The use of auto-encoders or resource-aware dimensional-
ity reduction techniques have been suggested in the litera-
ture for feature extraction or facilitating shallow classifica-
tion methods such as nearest neighbor, or support vector
machine [5, 6]. None of the prior works, however, have
customized data projection as a way to achieve physical
efficiency for training and execution of DNNs in resource-
limited settings. DeLight, for the first time, proposes a sys-
tematic approach to optimize the data and DNN circuitry
for the underlying physical resources [4].

3. DeLight FRAMEWORK
Here we outline DeLight framework to facilitate training

and execution of DNNs in resource-constrained settings.

3.1 Training Phase
Figure 1 shows the global flow of DeLight for training

of a DNN model. DeLight’s training phase includes three
major steps: (i) Physical profiling (ii) Data projection cus-
tomization, and (iii) Updating DNN parameters using the
projected data embedding.
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Figure 1: Global flow of DeLight: training phase.

Physical Profiling. To update the DNN parameters, each
batch of training data is processed in two steps: (i) Forward
Propagation (FP), and (ii) Backward Propagation (BP). Ta-
ble 1 details the computation and communication cost of
each step. We use TFP

i and TBP
i to denote the forward

and backward propagation runtimes associated with model
i. DeLight characterizes the physical coefficients listed in
Table 1 by executing a set of micro-benchmarks that em-
ulate basic operations involved in forward and backward
pass. The characterization is a one-time process that in-
curs a fixed negligible overhead. A similar approach can be
used to model energy consumption.

Table 1: DNN Computation and Communication Costs.

Computation and Communication Costs

TFP
i = αflop

∑S−1
s=1 n

(s)
i n

(s+1)
i + αact

∑S
s=1 n

(s)
i

S: total number of DNN layers

n
(s)
i : number of neurons in the sth layer of model i
αflop: multiply-add cost
αact: activation function cost

TBP
i = 2αflop

∑S−1
s=1 n

(s)
i n

(s+1)
i + αerr

∑S
s=1 n

(s)
i

αflop: multiply-add cost
αerr: propagation error cost

TComm
i = αnet +

Nbits×Nshared
neurons

BWi

αnet: constant network latency
Nbits: number of signal representation bits
Nshared

neurons: number of shared neurons
BW i: operational memory bandwidth

DeLight uses the aforementioned cost metrics to deter-
mine a bound on the total number of training iterations

(N itr), as well as the overall size of the possible networks
that can be performed within the specified physical platform
limitations. The physical limitations can be either dictated
by the arriving rate of sensor measurements or the maximum
energy that an embedded platform can provide.

Platform Aware Data Projection. DeLight’s data pro-
jection is a pre-processing step. It works by projecting the
input data Am×n to an ensemble of lower-dimensional em-
beddings by seeking the best suited dictionary matrix Dm×l

and a corresponding coefficient matrix Cl×n s.t., the re-
quired number of neurons per layer of a DNN topology for
delivering a target inference accuracy, is minimized. In brief,
DeLight optimization is as follows:

minimize
l,D,C

(Nnet) s.t. ‖A−DC‖F ≤ ε‖A‖F (1)

‖y − ỹ‖F ≤ δu

where Nnet indicates the size of the DNN topology that
should fit the bounds acquired by platform characterization.
Here, y is the ground truth data label, and ỹ is the pred-
icated inference label. ‖ · ‖F denotes the Frobenius norm,
ε is an intermediate approximation error that casts input
matrix (A) rank, and δu implies the user-defined inference
error threshold. For a particular dataset, there are several
data representations corresponding to different sizes of the
projection subspace (l) that satisfy the conditions in Eq. (1).
DeLight leverages the degree of freedom in producing sev-
eral data embeddings to customize costly DNN training and
execution to the limits of the energy resources and compu-
tational budget. As we experimentally verify, l� m can be
achieved in real-world large datasets.
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Figure 2: Adjusting projection subspace for evolving data.

Figure 2 illustrates a high-level block diagram of DeLight
data projection unit. DeLight adjusts its data projection to
accommodate for the new structural trends that might be
added as data evolves over time. For each new arriving sam-
ple, DeLight first computes an approximation error achieved
by projecting the input sample into the subspace spanned
by the current dictionary matrix D. If the approximation
error is less than a threshold (β), it implies that the exist-
ing subspace ensemble is good enough to present that batch
of data samples. Otherwise, DeLight expands it dictionary
matrix to include the new data structures suggested by the
recently added data measurements. To do so, it adds the
normalized value of the new samples to the projection ma-
trix B and updates the coefficient matrix C to fit the new
projection subspace while avoiding the cost of re-applying
the projection for the entire dataset. We use β = 0.1 in our
evaluations presented in Section 4.

Bag of DNN Models. To further boost the inference
accuracy, DeLight uses the achieved performance gain to



Table 3: Performance improvement achieved by DeLight over the state-of-the-art deep learning approach.

Application
Baseline DeLight Performance Improvement

Input
DNN

Training
Runtime

Training
Energy

Customized
DNN

Pre-processing
Runtime

Pre-processing
Energy

Training
Runtime

Training
Energy

Training
Runtime

Training
Energy

Execution
Runtime

Memory
Footprint

Imaging (10%) 200× 230× 230× 9 42.1 min 2394 J 70× 160× 160× 9 0.7 min 16 J 11.6 min 417 J 3.4× 5.5× 2.6× 2.8×
Smart-Sensing (5%) 5625× 2000× 500× 19 138.4 min 33948 J 100× 500× 100× 19 1.7 min 91 J 6.8 min 341 J 16.3× 78.8× 108.3× 40.3×
Audio (5%) 617× 50× 26 21.2 min 1762 J 78× 50× 26 0.6 min 21 J 8.3 min 391 J 2.3× 4.2× 6.2× 7.3×

train multiple DNNs each customized for a specific lower-
dimensional data embedding. Let Nc denote the number of
DNNs trained for a particular task. Nc should be deter-
mined such that sum of iterations to train these networks∑Nc

k=1N
itr
k as well as the associated number of parameters∑Nc

k=1

∑S−1
s=1 n

(s)
k n

(s+1)
k meet the physical constraints.

3.2 Execution Phase
Once the DNN model is trained to meet the desired infer-

ence accuracy, there are two main steps to predict the class
label for each incoming test data (Figure 3). First, each test
sample is projected based on the learned dictionary matrix
D. Second, the corresponding coefficient vector C is fed into
the trained DNN model to obtain its class label. The ex-
ecution phase only requires a forward propagation for each
transformed data sample. The same computational model is
directly applicable to the execution phase by excluding the
backward propagation.
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Figure 3: Global flow of DeLight: execution phase.

4. EVALUATIONS
Platform Setup. We use Nvidia Tegra K1 development
kit as our hardware platform [7]. The Nvidia TK1 is an em-
bedded processor designed for realizing different computer
vision, robotics, security, automotive, and mobile sensing
applications. It includes 192 CUDA cores and a 4-Plus-1
quad-core ARM Cortex A15 CPU with a 2 GB memory.
We leverage all the available CPU cores on the specified
platform to perform data projection using standard Mes-
sage Passing Interface (MPI), while the DNN training and
execution have been conducted using the CUDA cores. We
adopt stochastic gradient descent with momentum [8] for
back propagation and Tangent-Hyperbolic as the non-linear
activation function for hidden layers.

Application Data. We evaluate DeLight using (i) Imag-
ing, (ii) Smart-sensing, and (iii) Audio datasets that are
key enablers in deployment of different autonomous learning
tasks. Table 2 specifies our dataset size for each application.

Table 2: Size of evaluation datasets.

Imaging [9] Smart-Sensing [10] Audio [11]
200× 54129 5625× 9120 617× 7797

86.7MB 46.3MB 38.5MB

Performance Improvement. Table 3 details the perfor-
mance improvement achieved by DeLight compared to the
state-of-the-art implementation currently used for solving
deep learning problems in which Dropout technique is used
to avoid over-fitting [12] and the raw data is used for DNN

training with no pre-processing. Nc = 1 is used for com-
parison purposes. As shown, the one-time pre-processing
overhead of DeLight is amortized when the iterative DL al-
gorithms are run on the projected data.

5. CONCLUSION
We present DeLight, a novel end-to-end framework for

realization of sensing and understanding tasks in resource-
constrained settings using deep learning models. DeLight
adaptively learns and customizes the hybrid structure of
the streaming input data to improve system performance
in terms of memory footprint, energy consumption, and/or
runtime. Our framework provides designers with a user-
friendly API for rapid prototyping and evaluation of an ar-
bitrary learning task on multi-core CPU, and/or CPU-GPU
platforms. We demonstrate three contemporary practical
design experiences on a state-of-the-art IoT platform. Our
experiments demonstrate up to 100-fold performance im-
provement compared to the best known prior solutions.
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