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ABSTRACT
In the recent years, new services and businesses leveraging
location-based services (LBS) are rapidly emerging. On the
other hand this has raised the incentive of users to cheat
about their locations to the service providers for personal
benefits. Context-based proofs-of-presence (PoPs) have been
proposed to enable verification of users’ location claims. How-
ever, as we show in this paper, they are vulnerable to con-
text guessing attacks. To make PoPs resilient to malicious
provers we propose two complementary approaches for mak-
ing context-based PoPs: one approach focuses on surprisal
filtering based on estimating the entropy of particular PoPs
in order to detect context measurements vulnerable to such
attacks. The other approach is based on utilizing longitudi-
nal observations of ambient modalities like noise level and
ambient luminosity. It is capable of extracting more entropy
from the context to construct PoPs that are hard to guess by
an attacker even in situations in which other context sensor
modalities fail to provide reliable PoPs.

1. INTRODUCTION
Contemporary mobile devices are capable of utilizing a

range of positioning technologies such as GPS or network
triangulation to find their locations. Therefore, new ap-
plications and services leveraging the mobile device’s loca-
tioning abilities are rapidly emerging. For instance, Face-
book and other online social networks (OSNs) extensively
utilize location “check-ins” of users to enhance their services;
Foursquare [8] uses the location information to connect users
to local businesses like shops or restaurants; a number of
business owners offer concrete benefits such as free vouch-
ers, special discount, and even cash value to the most active
registrants visiting their shops or restaurants.
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The LBS business model is built upon the premise of trust-
worthiness of mobile users. However, as the LBS and busi-
nesses are on the rise, so are the clients’ incentives to engage
in location cheating for their personal benefit. Misbehaving
users may obtain unjustified benefits at particular venues
by repeatedly making false location check-ins. “Fake loca-
tion” applications that aid the cheating clients are already
available for popular smartphone platforms.

A drawback of currently deployed positioning technolo-
gies is that they rely on the mobile client to perform the
positioning operation. It is difficult for external entities to
determine whether the location claimed by a client device is
in fact correct. Therefore, there is a need for location proofs:
methods for verifying the correctness of location claims that
clients present to the LBS. In peer-to-peer scenarios, mobile
devices may require proofs of co-presence from other devices
such that they can control their visibility. For example, a
device might want to reveal its presence in a particular loca-
tion only to those peer devices that are present in the same
location [10]. Therefore, the devices need to be able to ver-
ify that a location claim made by a peer device indicating
proximity is indeed genuine. The peer device is required
to present a proof of co-presence to establish the validity of
their claim. In both cases, we model the situation as fol-
lows: a prover aims to provide a proof-of-presence (PoP) to
a verifier that they are in the same context, i.e., present in
the same proximate environment.

Prior work has suggested two main classes of solutions
for constructing PoPs: beaconing and context-based PoPs.
The former class of proofs is based on active beaconing of
information by the verifier into its immediate vicinity. The
potential provers are then required to capture this informa-
tion using their on-board sensors (e.g., WiFi or Bluetooth).
The beaconed information is utilized by the prover either di-
rectly as the proof or in a proof-of-knowledge protocol with
the verifier. The underlying presumption of this approach is
that only a device actually co-present with the verifier is able
to accurately capture the information beaconed by the ver-
ifier. In peer-to-peer scenarios, beaconing information into
the context has the drawback that the verifier has to reveal
its presence in the context. However, revealing presence may
be undesirable because of its adverse impact on the verifier’s
privacy. For example, if beaconing is realized using a WiFi



or Bluetooth channel, the verifying device needs to actively
emit the beacon information and thus expose its own MAC
address.

In this paper, we focus on context-based PoPs. These are
based on simultaneous sensing of contextual data by both
the verifier and the prover. A number of such methodologies
have been proposed [5, 10,14–16]. In this setting the prover
and verifier concurrently sample their incident context via
sensors. The supposition is that the transient contextual
fluctuations cannot be exactly sensed or predicted by an
attacker outside the context. These measurements are ei-
ther directly used to generate a common key (e.g., [16]), or
the prover sends its measurements to the verifier who com-
pares them to its own measurements. Because of the sensing
and synchronization jitters, the measurements often contain
noise. If the (noisy) measurements are similar enough, this
constitutes a PoP. In the following, we denote such proofs
as context-based proofs of presence.

Earlier work on context-based PoPs do not consider the
possibility of context-guessing attacks, either because these
are out of scope [15,16], or, they assume that the used con-
text modalities provide sufficient entropy so that attackers
are not able to fabricate context-based proofs, [10].

Our goal and conttributions: In this paper, we empir-
ically analyze such attacks against commonly used context
sensor modalities such as Bluetooth and WiFi, thus demon-
strating that for reliable PoPs, the entropy of individual
context observations needs to be taken into account also.

We address context guessing attacks by proposing two
complementary approaches: First we show how by using
surprisal filtering we can make sure that only PoPs with
sufficient entropy are admitted as valid PoPs. The approach
is based on applying data mining methods for profiling the
context and estimating the occurrence probability of partic-
ular context parameter combinations in them. Second we
make use of longitudinal ambient context observations to
extract inherent randomness from the context that contains
sufficient entropy to make context guessing attacks in most
cases impractical. Earlier approaches utilize ambient con-
text data (e.g., [5,15]), in which only momentary snapshots
of the context are considered. In contrast, we monitor the
context and short-term changes in the context’s physical pa-
rameters over a longer time period and utilize these changes
in the context as a means to extract sufficient entropy to
construct a reliable PoP.

We make the following contributions:

• We empirically analyze the feasibility of context-guessing
attacks on context modalities that have earlier been
used for co-location verification (Bluetooth and WiFi)
and show that these modalities are in fact vulnera-
ble to attacks in which a malicious prover fabricates
context-based PoPs to cheat about its location.

• We propose two countermeasures to mitigate context-
guessing attacks: surprisal filtering which is based on
profiling and estimating the entropy associated with
individual PoPs, and, the use of longitudinal obser-
vations of ambient physical properties of the context.
We show based on empirical data that surprisal fil-
tering provides an efficient method for identifying po-
tentially too weak PoPs and demonstrate how to use
longitudinal context data in such cases to extract suf-
ficient entropy from the context to construct a reliable
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Figure 1: Scenario 1: Peer co-presence
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Figure 2: Scenario 2: Presence at a venue

context-based proof-of-presence.

2. PROBLEM SETTING
Context-based proofs-of-presence play a role in proofs of

(co-)presence between peers and proofs of presence at a
venue with regard to a Location-Based Service (LBS). Unlike
some earlier works that consider the comparison of context
information for creating a pairing between the principals
(e.g., [16]), we assume that there already exists a security
association between the parties. Therefore, we are not con-
sidering the threat of man-in-the-middle or eavesdropping
attacks in this discussion. We focus on the problem of one
party lying about its own context to the other party.

The first scenario is depicted in Fig. 1: Alice, Bob and
Charlie are friends in an Online Social Network (OSN). Alice
is willing to automatically share her status information or
engage in communications, like instant chat with her OSN
friends who are present in the same context as she is (i.e.,
Bob), but not with others (e.g., Charlie). Therefore, Bob
needs to prove co-presence to Alice in order to get connected
to her.

In the other scenario depicted in Fig. 2, a client of an
LBS wants to prove to the LBS its presence at a venue (e.g.,
a restaurant or a shop) in order to obtain benefits like re-
bates or gift cards given out to loyal customers of the venue.
The LBS cannot rely on unilateral presence claims of the
client, since the client has an incentive to cheat in order
to obtain the above-mentioned benefits. Independent proof
of the client’s presence provided by the venue is therefore
required.

2.1 Threat model and Assumptions
In both scenarios, the attacker A is a malicious prover,

who fabricates a PoP in order to cheat the verifier V into
believing that A is in the same context as V .

In Scenario 1 A is a malicious user, e.g., Charlie in Fig. 1,
who engages in a cyberstalking attack and wants to reveal a
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Figure 3: Context-based proof-of-presence

target user’s (e.g., Alice in Fig. 1) location without actually
being co-located with her. To do this, Charlie fabricates
location claims for places which he knows Alice is known
to visit, and waits for which location Alice responds to his
location claim, thereby learning Alice’s whereabouts. Alice
acts as the verifier V and Charlie as the malicious prover A.

For Scenario 2, A is a malicious client of the LBS, who
wants to do fake location check-ins at a venue for obtaining
benefits even though he has not visited the venue in reality.
The venue acts as the verifier V . The malicious client A
fabricates PoPs and presents them to the venue V . If V
falsely accepts A’s PoP as genuine, it will issue a PoP to A,
which A can then use to falsely convince the LBS to believe
that A has visited the venue in question.

In particular, A is likely to target such contexts that it can
monitor over an extended period of time in order to obtain
infromation that is useful for fabricating PoPs. Therefore
we have to assume that for any context X, the attacker
A has acquired a rich context profile that it can utilize in
maximizing its chances of fabricating a PoP that would be
accepted by V .

2.2 Problem Definition
The basic mechanism for providing context-based PoPs

which is applicable in the above scenarios is shown in Fig. 3.
Both the verifier V and prover P record a context measure-
ment CV (t) and CP (t) at time point t. The prover P then
sends its context measurement CP (t) to the verifier V , who
compares it with its own context measurement CV (t) and
determines, whether CP (t) is similar enough to accept it as
a proof-of-presence of P . The rationale behind such PoPs
is that devices in the same context will observe roughly the
same contextual events and environmental conditions and
therefore their context measurements will be more similar
than context measurements of devices that are not in the
same context.

To mitigate the risk of V erroneously accepting PoPs that
the attacker A has fabricated, V needs to be able to evaluate
the risk that a particular PoP could be fabricated in that
context. We therefore need a way to determine the entropy
of V ’s context measurements CV , i.e., how difficult it would
be for A to fabricate a valid CA. In addition, to address
such cases in which the context measurement of V would
be too easily guessed by A, we need to augment the context
measurements used in the PoPs with modalities that contain
sufficient entropy against this guessing attack.

3. CONTEXT GUESSING
A malicious prover A may try to make the verifier V be-

lieve that he is in the V ’s context X, even though he is
located somewhere else, for example to make false location

Context X

Verifier V

malicious Prover A

CA(t− k)

CA(t− k)CV (t)

Figure 4: Overview of the context guessing attack

chek-ins at a venue so that he will obtain unjustified benefits
from the venue. One way for A to achieve this is to launch a
context guessing attack. A fabricates a context measurement
CA and presents it as a context-based PoP to V . If the fab-
ricated measurement is similar enough to V ’s measurement
CV , V will falsely accept it.

For example, when executing the attack at timepoint t,
as shown in Fig. 4, A can replay an old context measure-
ment CA(t − k) it obtained while visiting context X at an
earlier timepoint t − k, claiming it to be his current con-
text measurement. The attack will succeed, if CA(t − k)
is similar enough to the verifier’s measurement CV (t). Al-
ternatively, A could also fabricate the context measurement
CA by building a model of the context X by using several
earlier measurements CA made in the target context X.

In earlier works, context-based co-location verification has
been based on direct measurements of contextual values
in different modalities. For example, the acoustic environ-
ment [5, 15], ambient light [5], atmospheric gases, temper-
ature, humidity and air pressure [14], as well as WiFi [16],
Bluetooth and GPS [15], have been investigated as modali-
ties for contextual proofs of presence.

In their very recent work, Truong et al. found that the
sets of WiFi and Bluetooth devices observed along with their
received signal strengths provide good performance in co-
location verification [15]. We therefore decided to use WiFi
and Bluetooth as the basic modalities for PoPs and tested
whether PoPs based on Bluetooth or WiFi are vulnerable to
the context guessing attack. The authors of [15] kindly pro-
vided us the dataset they used for their experiments so that
we could make a direct comparison with their results. Note,
however, that their usage scenario relates to zero-interaction
authentication (ZIA) settings, where the attack model is dif-
ferent: their co-location verification is intended to protect
against relay attacks because the prover and the verifier mu-
tually trust each other. In contrast, in our scenario the po-
tential attacker is a malicious prover, rather than the threat
of a relay attack.

3.1 Attack Implementation
In our implementation, V uses a classification model to

distinguish between co-located and non-co-located context
measurements. V trains his classification model with a be-
nign dataset containing examples of co-located and non-co-
located measurement pairs. To test the model’s performance
against context guessing attacks, we construct an attack



dataset where benign verifier V measurements are paired
by measurements that could have been fabricated by A by
replaying all measurements from the same context that were
made 6 to 24 hours earlier.

From the measurement pairs, V calculates a set of fea-
tures that represent different distance measures between the
measurements and combines them to feature vectors. Fea-
ture vectors calculated based on the benign dataset are used
to train the classification model, whereas features from the
attack dataset are used as testing data to evaluate the classi-
fier’s performance against the context guessing attack. The
classification algorithm used is Multiboost in combination
with J48 Graft as the base learner. We used the Weka data
mining suite [6] to execute our experiments.

For training the classifier we used the following features:

Feature 1 (Jaccard distance).

Jδ(CV , CP ) = 1− ‖CV ∩ CP ‖‖CV ∪ CP ‖
, (1)

Feature 2 (Mean of Hamming distance).

Hδ(CV , CP ) =

∑
i=1,2,...,n |m

P
i −mV

i |
n

(2)

Feature 3 (Euclidean distance).

Eδ(CV , CP ) =

√ ∑
i=1,2,...,n

(mP
i −mV

i )2 (3)

Feature 4 (Mean exponential of difference).

Ξδ(CV , CP ) =

∑
i=1,2,...,n e

|mP
i −m

V
i |

n
(4)

where mV
i ∈ CV and mP

i ∈ CP denote the individual el-
ements of the context measurements of the verifier V and
prover P , respectively.

Feature 5 (Sum of squared rank differences).

ρδ(CV , CP ) =

|CV ∩CP |∑
i=1

(rank(mP
i )− rank(mV

i ))2 (5)

where rank(mP
i ) and rank(mV

i ) denote the ranks of mP
i and

mV
i in CP and CV , respectively, sorted in ascending order.

3.2 Datasets
To evaluate the feasibility of context guessing attacks,

we used two datasets: the zero-interaction authentication
dataset by Truong et al., and the ConXPoP dataset, which
we collected to test context guessing attacks and counter-
measures against it. The ZIA dataset was primarily used
to demonstrate the feasibility of the attack, whereas the
ConXPoP dataset contains more context modalities and an
explicit context labeling which we used to examine possible
countermeasures against the context guessing attack.

ZIA Dataset contained measurements of the MAC ad-
dresses of visible Bluetooth devices and WiFi access points
and their received signal strengths, simultaneously collected
from two devices. The dataset contained a total of 2302 sam-
ple pairs, out of which 1140 were such that the devices were
co-located, and 1162 pairs were samples from non-co-located
devices. We used this dataset to derive features to train the

benign dataset for training the classification model of the
verifier V . As a baseline, we examined the classifier’s perfor-
mance on the benign dataset using 10-fold cross-validation,
and could corroborate the results of [15], obtaining a false
positive (FP) rate of 2.5 % for Bluetooth features and 1.6
% for WiFi features.

The attack dataset simulating context replay attacks was
constructed by remapping the experiments in ZIA dataset
by pairing measurements that were made in the same lo-
cation, but at different times. The ZIA dataset contained
ground truth labels telling whether measurement pairs were
co-located or not, but the actual location in which the mea-
surements had been made was not included in the dataset.
Therefore we had to use the set of observed WiFi access
points associated with each measurement as representing the
location in which the measurement had been made.

To obtain a criterion by which to decide whether mea-
surements made at different times were made at the same
location, we compared the co-located measurement pairs to
the non-co-located ones in the ZIA dataset and observed
that a Jaccard distance value of 0.9 for the sets of observed
WiFi devices provided a good separation between co-located
and non-co-located measurement pairs. We therefore con-
cluded that if the Jaccard distance of two measurements is
less than 0.9, we can assume that these measurements were
made in the same location.

We then paired each experiment measurement with such
measurements for which the Jaccard distance between the
sets of WiFi measurements was below 0.9, i.e., that were
made in the same location, but at a different time.

ConXPoP Dataset data collection was done using a
purpose-built app running on Android smartphones given
out to study participants. The app continuously measured
contextual parameters and periodically uploaded them to a
server for off-line data analysis. The collected data included
link layer identifiers and observed signal strengths for WiFi
and Bluetooth devices in proximity (sampled once a minute),
as well as a continuous trace of the ambient noise level and
luminosity, as observed by the smartphone’s sensors.

Participants included volunteers from the research lab staff
sharing nearby offices and visiting the same lunchtime restau-
rant. This enabled the participants to provide a rich dataset
of co-located measurements arising from natural everyday
situations.

All participants were informed in writing about the pur-
pose, goals and content of the data collection campaign be-
forehand. Participants were free to stop or interrupt data
collection at any point by disabling the data collection app.
All participants were also given the possibility to revoke
their participation in the experiment by demanding the data
collected by them to be deleted.

Participants were asked to provide, via the user interface
of the app, information about particular contexts that they
were visiting (e.g., Home, Office, Restaurant, etc.) and
which other participant devices were co-located with the
user’s own context collector device. Devices of other partic-
ipants were identified using easily recognizable nicknames.
Participants were asked to mark only such other devices as
co-located that were likely to be present in the same room
with the user for the following two minutes.

Furthermore, in order to obtain examples of co-located ob-
servations from contexts where typically only one test partic-
ipant is present (e.g. the test participants’ homes), each test



Table 1: Results of the context guessing attacks
FP Rate

Dataset BT WiFi BT+WiFi
ZIA benign 2.5%
ConXPoP benign 14.2% 11.0% 9.3%
ZIA attack 35.1%
Increase in FP rate +32.6%
ConXPoP attack 21.9% 26.0 % 23.5%
Increase in FP rate +7.7% +15.0% +14.2%

participant was provided with two context collector devices:
a main device and an “alter ego” device. By bringing the
alter ego device together with the main device to contexts
that no other test participants visited, users could provide
co-located context samples also from such contexts.

During a data collection period of 10 days, participants
generated a total of 5602 annotated co-located context mea-
surement pairs. Using these data, we constructed for each
participant a benign dataset and an attack dataset. The be-
nign dataset for training each user’s co-location classifier was
constructed by pairing measurement pairs marked as being
co-located by the user or some other user with a roughly
equal amount of measurement pairs that were not marked
as co-located.

The attack dataset was constructed by letting one par-
ticipant at a time act as the verifier V . For each veri-
fier observation CV (t) made in a named context X (where
X ∈ {“Home”, “Office”, “Restaurant”}), potential attacker
observations CA(t − k) made in the same context X were
selected allowing all participants to take the role of the ma-
licious prover A. We selected k to be 6 to 24 hours.

3.3 Results
We evaluated both the ZIA dataset and the ConXPoP

dataset by training classifiers with the benign datasets and
using the attack datasets as testing datasets. As a baseline
to compare against, we used 10-fold cross-validation of the
training dataset. Table 1 shows the results.

The differences of the attack scenarios to the benign dataset
results are clear, showing the effect of the context guessing
attack. For both ZIA and ConXPoP attack datasets, the
FP rate increases significantly in comparison to the benign
dataset results. This difference is especially clear for the ZIA
dataset. For the ConXPoP dataset, the change is somewhat
smaller, due to the higher FP rate in the benign dataset.
This is caused by the more challenging experimental set-
up in comparison to the ZIA dataset. Whereas in the ZIA
dataset, co-located and non-co-located samples were more
clearly separated from eachother, the ConXPoP set up was
more ambiguous. The criterion for co-location was that we
regard any devices in the same room to be co-located, other
devices not 1. However, in the office context, test partici-
pants used office rooms next to one another, so that their
devices were not co-located according to the above crite-
rion, but still the devices shared some common WiFi and
Bluetooth environment. This makes it more difficult for the
classifier to make a clear distinction between co-located and

1This criterion for co-location was selected, since for pro-
viding ground truth information, participants needed to be
able to visually observe any co-located persons and their
associated devices.

non-co-located observations, resulting in a higher False Pos-
itive rate also in the benign dataset.

However, we see that for both datasets, the context guess-
ing attack yields a False Positive rate of 22% to 35%2. This
gives an attacker a chance of at least one out of five to suc-
ceed in a context replay attack, showing that in settings
where the prover cannot be trusted by the verifier, context
measurements alone cannot provide the basis for a reliable
proof of presence. The verifier needs also to have the possi-
bility to assess how large the risk of a guessing attack asso-
ciated with a PoP is.

4. HARDENING CONTEXT-BASED PROOFS
In this section, we introduce two countermeasures for hard-

ening context-based proofs-of-presence against context guess-
ing attacks. The first countermeasure aims at identifying
such PoPs that are potentially easy to guess. We do this
by estimating the entropy associated with a particular PoP.
This estimation is based on the notion of surprisal, i.e., the
self-information associated with a particular context obser-
vation of the verifier. The notion of surprisal is closely re-
lated to entropy but with a difference: surprisal is the uncer-
tainty associated with the particular outcome of a random
variable, whereas entropy measures the average uncertainty
associated with a random variable.

In our case, we consider the observed context X of V
as a random variable OX taking particular measured con-
text observations CV as its value. The surprisal associated
with a context measurement CV is therefore a measure for
the uncertainty of that particular outcome of the random
variable. We utilize this and use surprisal-based filtering to
dismiss such PoPs that can be potentially easily guessed by
the attacker A, as described below in Sect. 4.1.

The other countermeasure we propose aims at increasing
the entropy of PoPs in order to make context guessing in-
feasible for the attacker. In contrast to earlier approaches
for co-location verification [5, 13, 15, 16], where short mo-
mentary snapshots of the context were used to determine
co-location, we use a longitudinal approach. By observing
the context over a longer time period and observing changes
in the context’s ambient properties like luminosity and au-
dio, we aim at extracting sufficient entropy from the context
to make guessing of the context impractical. This approach
is explained in Sect. 4.2.

4.1 Surprisal Filtering
Surprisal filtering is based on estimating how easy it would

be for A to fabricate a PoP CA that is similar enough to V ’s
context measurement CV to be accepted as genuine. The
estimate is based on profiling V ’s contexts and utilising the
profiled information to estimate the occurrence probabilities
of individual context measurements CV in a context X. Our
intuition is that the lower the occurrence probability of a
context measurement C is, the more difficult it is for an
attacker A to fabricate the measurement, even if he has
monitored the context X earlier. Based on the probability
estimate of the proof, V can then reject such proofs, for
which the risk of fabrication is high.

2We do not report the false positive rates for WiFi for the
ZIA dataset, since we use the WiFi observations in the at-
tack dataset as ground truth for identifying measurements
made in the same context.



More formally, we define surprisal filtering as a function
ς : C ×X → {accept , reject}, where C denotes the domain of
context measurements and X the set of V ’s known contexts.
The surprisal filtering function ς maps a context measure-
ment C ∈ C observed in a particular context X ∈ X to a
filtering decision accept or reject based on the surprisal value
IX(C) of the measurement in V ’s context X:

ς(C,X) =

{
accept IX(C) ≥ Ithr
reject otherwise

(6)

The calculation of the surprisal value is described in Sect. 4.1.1.
The rationale for this defense is the following: Information

representing a context is of two types. Static information,
such as the link layer addresses of WiFi access points in an
office, has a high probability of appearing in measurements
taken in that context at any time. Therefore, an attacker
who has previously visited that context is likely to be able
to fabricate a context measurement containing such static
information even when he is not present in the context. Dy-
namic context information, such as the Bluetooth link layer
addresses of smartphones belonging to customers at a shop,
is likely to be volatile and thus harder to predict. Nat-
urally, contexts with more dynamic information are more
amenable for reliable context-based PoPs. In the following,
we describe a way to measure the ‘dynamicity’ of the infor-
mation present in a context at a given time and show how it
can be used to enhance protection against context guessing
attacks.

4.1.1 Surprisal of Context Measurements
To be able to identify PoPs that are too easy to fabricate,

we need to measure how difficult it would be for an attacker
to guess a context measurement CA based on the history of
observations in the target context X. Since we are assuming
a strong attacker model, we have to assume that the attacker
A has equal opportunity to observe and generate a context
profile on X as the target V has, and use this profile to
fabricate PoPs that are likely to be observed in X.

To obtain optimal results, A needs to guess the correct
context measurement CV of V . The difficulty of fabricating
a PoP CA that is accepted by V is therefore dependent on
the difficulty of guessing CV .

We model the occurrence of a specific contextual measure-
ment C (e.g., a set of WiFi or Bluetooth (BT) devices) in
context X with the random variable OX . The probability
that a context measurement C is observed in context X is
therefore P (OX = C). The surprisal associated with this
context measurement is the self-information of this outcome.

Definition 1. The surprisal associated with a context
observation C in context X is the self-information of this
measurement

IX(C) = log(
1

P (OX = C)
) = −log(P (OX = C)) (7)

and is measured in bits3.

For example, if there is a 50% chance of observing a device
di in context X, i.e. C = {di}, then the self-information

3All logarithms are calculated with base 2, unless otherwise
noted.

related to an observation of di in X is IX(C = {di}) =
−log(P (OX = {di})) = −log(0.5) = 1 bit.

In order to calculate the surprisal associated with a mea-
surement C, we need to estimate the probability P (OX =
C). To do this, we adopt a frequentist interpretation of
probability and calculate the probability of context mea-
surment C in context X as the fraction of the number of
times that C has been observed in X. Hereby, we need to
distinguish between measurements that consist of a single
contextual event and multi-event measurements consisting
of several co-occurring contextual events. In the following,
we consider the occurrence of Bluetooth and WiFi devices
in the context as contextual events di.

Single-Event Measurements. In the case that the
measurement consists of a single contextual event d, i.e.,
C = {d}, the calculation of surprisal of C is straightforward.
We can calculate the estimated probability of the event as
the fraction of measurements containing this event within
the whole observation history database HX for context X.

C = {d} : P (OX = C) =
‖{Ci ∈ HX | d ∈ Ci}‖

‖HX‖
(8)

Multi-Event Measurements. For context measure-
ments containing more than one contextual event, the for-
mulation is slightly more complicated. We cannot merely
multiply the probabilities of the individual events, since in
reality, the events might be highly correlated with one an-
other, and assuming independence between events could there-
fore significantly over- or underestimate the true probability
of event combinations. Therefore, we need to estimate the
probability of a multi-event context measurement through
its occurrence frequency in the observation history database.
Thus, given a context measurement C = {d1, d2, . . . , dn}
that consists of several context elements, the occurrence
probability of C can be calculated as

P (OX = C) =
‖{Ci ∈ HX |∀di ∈ C : di ∈ Ci}‖

‖HX‖
(9)

As an example, let us consider context measurements of
Bluetooth devices. Let us assume that we have a total of
n = 100 context measurements of context X in the context
history database HX . Each measurement represents the set
of Bluetooth devices observed in context X during a time
window of two minutes. In the observation history, device A
has been observed in 55 measurements and device B in 35
measurements. Out of these measurements, 15 are such that
both A and B occur in the same measurement. Let us now
consider the probability estimates for different context mea-
surements. For individual measurements of the devices A
and B, we have P (OX = {A}) = ‖{Ci∈HX |A∈Ci}‖

‖HX‖
= 55

100
=

0.55 and P (OX = {B}) = ‖{Ci∈HX |B∈Ci}‖
‖HX‖

= 35
100

= 0.35.

For a measurement containing both devices, the estimate is

P (OX = {A,B}) = ‖{Ci∈HX |B∈Ci∧A∈Ci}‖
‖HX‖

= 15
100

= 0.15.

Given these measurements, we can calculate the surprisal
values for these measurements IX({A}) = −log(0.55) ≈ 0.86
bits, IX({B}) = −log(0.35) ≈ 1.51 bits, and, IX({A,B}) =
−log(0.15) ≈ 2.74 bits.

To estimate the probability of a multi-event measurement
C = {d1, d2, . . . , dn} in a context X in practice, we need
to identify the occurrence probability of the combination of
events in C occurring in context X. We do this by calcu-
lating the event combination’s occurrence probability in the



observation history database HX . This is a problem that
has been extensively studied in the data mining literature
in the context of frequent itemset mining. For example, the
Apriori algorithm [1] constructs the set of frequent itemsets,
i.e., combinations of items occurring more frequently than
a given threshold value in a given input database and their
occurrence counts. Also any other data mining algorithms
for mining frequent itemsets could be used. Apriori requires
as input a transaction database and a frequency threshold.
It returns the set of frequent itemsets in the transaction
database with regard to the frequency threshold and the oc-
currence counts of these frequent itemsets. We utilise this
and use the Apriori algorithm to calculate the frequent event
combinations observed in each context and their occurrence
counts by invoking the algorithm on the context observation
history database HX . We thus denote the set of frequent
event combinations in context X for frequency threshold
f ∈ [0, 1] with DX(f), where DX(f) = Apriori(HX , f).

Given DX(f), we can calculate a lower bound for the sur-
prisal of any measurement C using equation 7

P (OX = C) =


C.count

‖HX‖
, if C ∈ DX(f) (10)

f, otherwise. (11)

where C.count denotes the occurrence count of C in the
history database HX of context X.

This estimate is a lower bound, since for measurements
not in the set of frequent event combinations, we do not
have the exact occurrence count information (Apriori re-
turns this information only for the frequent combinations).
We only know that this occurrence frequency is smaller than
f . Therefore, we take f as the upper bound for the occur-
rence probability of the measurement.

4.1.2 Evaluation
In order to evaluate the effectiveness of surprisal filtering

against context guessing attacks, we determined separately
for each user’s context X the sets of frequently occurring
Bluetooth and WiFi devices in the ConXPoP dataset using
the Apriori algorithm as well as their occurrence frequen-
cies. Using the patterns’ occurrence frequencies, we calcu-
lated their corresponding surprisal values and filtered the
classification results in the attack datasets by matching the
measurements against the patterns and removing any such
measurements whose matching pattern fell below the sur-
prisal threshold. We then evaluated the impact of surprisal
filtering on the False Positive and False Negative rates. The
results are shown in Table 2.

As can be seen from the results, the filtering of PoPs based
on their surprisal value reduces the FP rate of the attack
scenarios by 52% to 60% for Bluetooth and 17% to 20% for
WiFi, depending on the selected minimal surprisal thresh-
old, thereby significantly reducing an attacker’s odds for a
successful context guessing attack.

4.2 Longitudinal Ambient Modalities
While surprisal filtering effectively reduces false positives,

our evaluation reveals that unfortunately, the False Negative
(FN) rate also increases, especially in the Home contexts
from 1.1% to 28.6% for WiFi-based and 55.0% for Bluetooth-
based filtering on the average. This is understandable, since
the device set-up in these contexts is usually quite static and
the inherent entropy of the Bluetooth and WiFi environment

Table 2: Improvement in FP rates when applying
surprisal filtering on attack datasets

Unfiltered Improvement for Ithr = n bits

User FP
Rate

BT,
n=2
bits

WiFi,
n=2
bits

BT,
n=4
bits

WiFi,
n=4
bits

A 13.0% -6.1% -2.0% -8.9% -2.8%
B 37.8% -27.2% -5.4% -31.1% -5.6%
C 37.2% -0.3% -4.9% -0.3% -5.3%
D 21.4% -17.4% -0.0% -19.4% -0.0%
E 16.2% -11.6% -7.6% -13.8% -10.0%
F 40.5% -23.8% -7.7% -26.8% -9.5%

Avg 27.7% -14.4% -4.6% -16.7% -5.5%
Relative change -52.0% -16.6% -60.4% -20.0%

therefore does not support the creation of effective PoPs
based on these context modalities. We therefore introduce a
complementary approach for handling PoPs in contexts that
provide low surprisal in the context using the basic PoP
schemes introduced above. In the following we show how
longitudinal observations of ambient noise and luminosity
can be used to construct PoPs that are hard to guess, even in
contexts where the device set-up with respect to Bluetooth
and WiFi devices is too static to provide valid proofs using
the basic approach.

4.2.1 Ambient Light
Most smartphone devices today are equipped with a lu-

minosity sensor, primarily used for adjusting the brightness
of the smartphone’s display in different lighting conditions.
Sensor information about ambient luminosity is therefore
readily available. The luminosity sensor does not consume
much energy, making continuous tracking of ambient lumi-
nosity feasible.

Halevi et al. [5] investigated the use of ambient light for
co-location verification for trusted end devices. However,
they only consider the mean lighting level recorded by the
devices during a short snapshot and conclude co-presence, if
the average lighting levels do not deviate too much from one
another. Such a simple scheme is obviously vulnerable to a
malicious prover A, who profiles the lighting conditions in a
target context beforehand. For a context guessing attack, he
just needs to replay the average lighting level in the target
context as his fabricated measurement and he will succeed
with high likelihood.

Therefore, we adopt a more sophisticated scheme. We do
not consider only the average lighting level in the context,
but focus on the relative changes in the lighting conditions
over a slightly longer period of time, e.g., one minute. Our
intuition is that such changes often arise from random events
like human activity in the context and are therefore difficult
to predict.

4.2.2 Ambient Noise Level
The use of ambient noise for the purpose of co-location

verification has been investigated in the literature [5, 15].
Halevi et al. used time- and time-frequency-based similar-
ity measures between two short 1-second audio snapshots,
whereas Truong et al. [15] used similar measures but 10-
second snaphots. In contrast to these approaches we take a
slightly different approach and focus on the changes in the
ambient noise level over a longer period of time, e.g., one



minute. Here also, our intuition is that changes in ambient
noise are likely to result from human activity (e.g., people
talking) which for a malicous prover A is very difficult to
predict.

For the purpose of context-based PoPs, we take the follow-
ing approach: when the prover P requests a PoP, the verifier
V and prover P record a snapshot M = {m1,m2, . . . ,mn},
where the measurements mi denote average readings of lu-
minosity or ambient noise level, depending on the modality
used, during subsequent time windows of width w. In prac-
tice, we propose to use windows of width w = 1 sec and
to use snapshots of one minute, i.e., n = 60. We think
that one minute is a long enough time period to capture
enough changes in the context, while short enough to allow
practical PoPs to be executed with modest delays. Since in
practice many applications will execute PoPs asynchronosly
and semi-automatically in the background, a delay of one
minute should not present a big problem for user interac-
tion. For example, an on-line social networking app might
execute the PoP in the background after the user “checks
in” in a particular location after arriving there, without re-
quiring the user to wait for the completion of the protocol.
Only in the case that the PoP fails, the user might get an
error notification that the check-in failed.

Similar to the approach with WiFi and Bluetooth, we cal-
culate the mean Hamming distance, the euclidean distance,
and the mean exponential of difference (Features 2- 5 in
Sect. 3) between the snapshots MV and MP of the verifier
V and prover P .

We also introduce an additional feature for luminosity
and audio measurements, the maximum cross-correlation
between the measurement snapshots.

Feature 6 (maximum cross-correlation).

Mcorr (MV ,MP ) = max{cross − correlation(MV ,MP )}
(12)

Since the placement of the sensors of a mobile device in
a context plays a significant role on the intensity of the
light and audio measurements these sensors pick up, two co-
located devices might record measurements at significantly
different signal levels. For our scheme this is, however, not
a problem, since we are primarily interested in the changes
in the context values and not the absolute readings as such.
We therefore scale the context snapshots MV and MP by
applying a min-max scaling so that all scaled measurements
assume values between 0 and 100.

Similarly to the approach taken in Section 3, we use the
obtained distance measures calculated from the benign dat-
set to train a classification model for co-location for making
predictions about whether a prover P ’s context measure-
ment is co-located with the verifier V or not.

4.2.3 Evaluation Results
To evaluate the effectiveness of using longitudinal mea-

surements of luminosity and audio as context modalities for
PoP, we added features 2 - 6 calulated based on luminos-
ity and audio to the WiFi and Bluetooth-based features we
used for the co-location classifier in the basic PoP scheme.
We then evaluated the effectiveness of different feature com-
binations on the benign and attack datasets. Table 3 shows
the results for the ConXPoP dataset (The ZIA dataset did
not contain luminosity nor audio measurements).

Table 3: PoPs utilizing audio and luminosity modal-
ities

Classifier features FP rate FN rate
Benign dataset
Luminosity 20.1% 14.3%
Audio 19.2% 16.0%
Luminosity+Audio 9.3% 9.2%
BT 16.1% 9.8%
WiFi 11.0% 9.9%
BT + WiFi 9.3% 6.4%
Luminosity+Audio+BT+WiFi 4.2% 2.4%
Attack dataset
Luminosity 1.1% 0.0%
Audio 0.4% 0.0%
Luminosity+Audio 0.4% 0.0%
BT 21.9% 0.0%
WiFi 26.0% 0.0%
BT + WiFi 23.5% 0.0%
Luminosity+Audio+BT+WiFi 3.6% 0.0%

As can be seen, adding audio and luminosity as PoP fea-
tures significantly decreases the False Positive rates for both
the benign and attack datasets’ classification results. Espe-
cially for the attack dataset, the luminosity and audio con-
text modalities clearly outperform PoPs based on WiFi and
Bluetooth. This significantly impacts the attacker’s ability
to succeed in context guessing attacks.

5. DISCUSSION
Our results show that in scenarios in which the prover

can not be trusted, context guessing attacks pose a serious
problem for contextual proofs-of-presence for some context
modalities like WiFi or Bluetooth observations. However,
by profiling the user’s contexts and using the surprisal of a
contextual PoP as a filtering criterion, we can to some de-
gree mitigate this threat. The impact of the countermeasure
on the acceptance of benign PoPs is, however dependent on
the type of context. In contexts with only little dynamic
context information (e.g., a person’s home) it is challeng-
ing to conduct valid PoPs with a sufficient surprisal. How-
ever, many contexts that are relevant for our usage scenar-
ios are typically public in nature (e.g., restaurants or shops)
and contain significant amounts of dynamic context infor-
mation. The lack of surprisal in some context modalities
can be encountered by extending PoPs to further ambient
context modalities providing more entropy. As we showed
in Sect. 4.2, the addition of luminosity and audio to the
PoP modalities provide good performance against context
guessing attacks.

It seems therefore likely that constructing PoPs with suf-
ficient surprisal in most contexts is feasible. In our future
work we intend to investigate this issue further. In situations
in which ambient context entropy is not sufficient (e.g., in a
dark and silent room during the night), PoPs can be still fea-
sible by combining the context-based and beaconing-based
PoP approaches. Our currently ongoing research regarding
the use of ambient context sensor modalities indicate, e.g.,
that beaconing-based PoPs using the visible light channel
are feasible. They require, however active user involvement,
which limits the applicability to such use cases, in which the
user is actively involved, e.g., making a location chek-in.



In contrast to other earlier works utilizing audio measure-
ments for co-location proofs [5, 15], our approach has con-
siderable privacy advantages since the PoP utilizes ambi-
ent noise level and not the actual fine-grained audio signals.
Therefore, the prover P does not need to transmit poten-
tially sensitive audio recordings to the verifier V in order
to obtain a proof-of-presence. This is important especially
in the peer-to-peer scenario, in which all users can assume
both the role of a prover P and a verifier V .

5.1 Limitations
Relay attacks pose a fundamental problem for proof-of-

presence schemes, and to the best of our knowledge, only
distance-bounding based techniques (cf., e.g., [7]) are able to
provide an effective protection against such attacks. How-
ever, the drawback of distance bounding is, that it requires
special high-accuracy hardware that is typically not avail-
able on regular mobile devices.

For our application scenarios, relay attacks would not
seem to pose a major problem for economic reasons. For in-
stance, in the peer-to-peer scenario, it would be prohibitively
complex and costly for a malicious prover to place an accom-
plice in all possible contexts that a target node visits. In LBS
scenarios it might be conceivable that some malicious clients
could be motivated to stage targeted relay attacks against
selected venues. However, also here the usage of several dif-
ferent contextual modalities for PoPs significantly raises the
complexity and cost of the attack for a potential attacker
and especially his possible accomplices. A simple replaying
of PoP protocol messages by the attacker’s accomplice would
not be sufficient, but the accomplice would need to actively
participate in sensing the context of the verifier in several
different context modalities.

6. RELATED WORK
Closely related to our work are the papers by Truong et

al. [15] and Shrestha et al. [14]. They use direct measure-
ments of elements of the ambient context for determining
the co-presence of two devices in a zero-interaction authen-
tication scenario. However, they assume both endpoints of
the scenario to be trusted. The context guessing attack is
therefore not applicable to their scenario.

The concept of using context-profiling for evaluating con-
texts for security enforcement has been discussed by Gupta
et al. [4]. Their work focuses on estimating the threat level in
a particular context for the purpose of making access con-
trol decisions. Our work, takes a different viewpoint: we
estimate the occurrence probability of a particular context
measurement in view of the observation history, in order to
estimate the threat of a guessing attack.

6.1 Beaconing-based Proofs of Presence
Saroiu and Wolman [12] hypothesize six different LBS-

based scenarios, in which users of the LBS might have an
incentive to engage in location cheating. To tackle such sce-
narios, they propose a simple protocol for providing loca-
tion proofs based on beaconing of information over the WiFi
SSID of dedicated access points (APs) installed at the tar-
get venue. The proof of presence is based on the fact that
only devices in the access point’s proximity will be able to
receive these beacon signals. Our solution, however, is not
dependent on dedicated APs.

Another approach based on beaconing of information into

the context is the SMILE framework of Manweiler et al. [9],
which allows users to establish proofs of co-location after an
encounter that took place between the users. It is based on
users’ devices beaconing cryptographic keys into the prox-
imity of their device and recording keys beaconed by other
devices. Later the devices are able to rediscover each other
with the help of a third-party server. Contrary to our ap-
proach, SMILE requires the use of a central server and re-
quires all devices to engage simultaneously in beaconing and
scanning of the context, potentially impacting the privacy
of users by making their devices traceable across different
contexts. Carbunar et al. [3] present a scheme for privacy-
preserving Geo-Social Network logins. They utilize mix net-
works and a protocol involving blind signatures to provide
GeoBadges, i.e., anonymous proofs of repeated visits to a
specific venue. Their system relies on dedicated hardware at
the venues, like display changing QR codes used for location
verification. Polakis et al. [11] present a similar scheme for
location proofs, which relies on the use of temporary codes
which a location-based service can verify. These codes are
transmitted over NFC to client devices. The use of NFC as a
close proximity protocol thus acts as the proof of co-location.

6.2 Context-based Proofs of Presence
Varshavsky et al. [16] describe a system for co-location

verification. They combine Diffie-Hellman key agreement
with profiling of WiFi packets for verification of co-location.
They compare the received signal strengths of the received
packets on a WiFi network in common for both parties. If
these are similar enough, the peers are determined to be
co-located. According to their paper, the protection of this
scheme arises from the fact that fluctuations in the RF en-
vironment are unpredictable and spatially limited. Devices
located close to each other will be able to observe such fluc-
tuations, whereas devices that are farther away from each
other will not be able to do so. However, due to this same
property, the prover and verifier need to be located relatively
close to each other in order for their approach to work, lim-
iting its practical applicability. Most real-world scenarios,
in which peers are in the same room (e.g., Alice and Bob at
the same restaurant), but not in immediate proximity would
not be feasible using their approach.

Narayanan et al. [10] present three alternative asymmetric
protocols for principals to test for proximity in a privacy-
preserving manner. Their solutions are based on Private
Equality Testing and Private Threshold Set Intersection.
They also utilise location tags obtained by the principals
from ambient information in the context. They discuss lo-
cation tags derived from WiFi broadcast packets, WiFi ac-
cess point IDs, Bluetooth devices, GPS signals, GSM radio
features, audio fingerprinting, and, even atmospheric gases,
but present practical analysis only for the WiFi broadcast
packet-based solution. They estimated that using the ad-
dress fields, the packet sequence numbers and packet pay-
load, one could obtain roughly 10 bits of entropy from each
broadcast protocol. Their approach, however has some prac-
tical limitations, which they also acknowledge. Firstly, the
prover and verifier need to agree on using the same WiFi
access point and both be able to connect to it. Therefore,
the method is not applicable in situations in which no access
points are available, or, access to the AP is password pro-
tected. The ability to generate location tags is also heavily
dependent on the traffic patterns of the WiFi access points.



On more low-traffic networks like residential private access
points, acquiring a sufficient number of packets during a
reasonable time frame might actually be challenging. The
work by Varshavsky et al. [16] suffers from similar limita-
tions. Also, in some jurisdictions, it is legally prohibited to
intercept packets from foreign networks without proper au-
thorisation or explicit permission of the network’s operator.

6.3 Distance-Bounding Based Approaches
Hu et al. [7] investigated the problem of proximity verifi-

cation in the context of mobile ad-hoc networks as a defence
against wormhole attacks. They proposed to use a distance
bounding approach in order to verify an upper limit on the
distance to a node in the network. The distance bound-
ing approach, however, requires the ability to make tim-
ing measurements with a very high accuracy and is usually
not possible without special hardware. Distance bounding
is therefore usually not feasible on regular mobile devices.
Also Polakis et al. [11] and Carbunar et al. [2] proposed the
use of distance-bounding in their schemes in order to pro-
tect against relay attacks. This attack is feasible for our
scenario, but not very relevant, since the attacker would
need to instrument all target contexts with a relaying node.
Given the vast amount of different contexts that an attacker
would want to target, this would be clearly uneconomical
for the vast majority of potential attackers.

7. SUMMARY
We show that context-guessing attacks can impact context-

based proofs-of-presence in scenarios where a verifier can-
not fully trust the prover. The feasibility of such attacks is
shown on traces of Bluetooth and Wifi mobile data. To alle-
viate context guessing, a methodology based on the surprisal
related to context measurements is designed and formalized.
The effectiveness of this mitigation methodology is demon-
strated on measurements collected from mobile phones. Our
work also shows that in case there is insufficient entropy to
encounter the context guessing, such attacks can be further
thwarted using by adding ambient context modalities to the
PoP which is experimented using measurements of ambient
luminosity and noise levels.
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