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Figure 1: ALU PUF (example for 4-bit responses)

specific contributions are as follows.
ALU PUF Design. We present the ALU PUF, a novel PUF
design based on the delay difference in two different ALUs1

caused by manufacturing variations. The construction of
ALU PUFs can be readily automated during the processor
design phase by adding only a minimal number of compo-
nents, i.e., a simple synchronization logic and some arbiters
which are implementable by flip-flops.
ALU PUF based Remote Attestation Scheme. We propose
PUFatt, a new lightweight remote attestation scheme built
on top of the ALU PUF. Our attestation scheme prevents
impersonation attacks through binding software-based attes-
tation to hardware characteristics. Moreover, our trust an-
chor, the ALU PUF, is tightly-coupled with the processor
architecture and thwarts hardware-based attacks.
Implementation and Evaluation. We implemented the ALU
PUF in FPGA and show its low overhead, applicability, un-
clonability and stability.
Security Analysis. We analyze our PUF-based attestation
scheme under realistic assumptions. We show that our at-
testation method is sound and secure against impersonation
and basic hardware attacks.

2. THE ALU PUF
The ALU PUF exploits delay differences in identically de-

signed and redundantly available logic components, such as
the ALUs in a processor. Similar to the Arbiter PUF [7], the
ALU PUF exploits the time difference a signal takes to travel
along two symmetric delay paths within these components.
These paths are identical by design and shall be the same
by construction (layout), yet they incur different delays in
practice due to intrinsic manufacturing process variations.
Note that all the steps for the ALU PUF design can be read-
ily automated and integrated within the design phase of the
microprocessor. Automatable design-time optimizations are
needed to ensure symmetry of the delay paths.
ALU PUF Design. For simplicity, we illustrate the ALU
PUF design on an example with two 4-bit ALUs (Figure 1).
Note that all modern processors contain redundancies in
their ALU structure, resulting in low hardware overhead for
implementation.
ALUs consist of integrated circuits for computing arith-

metic and logic functions in hardware. In our example, each
ALU takes multiple input signals x = (x0, . . . , x7) (represent-
ing the ALU PUF challenge), guides them through a network
of gates and wires (representing delay paths) and generates
output signals o = (o1, . . . , o3) and o′ = (o′1, . . . , o′3), respec-
1Arithmetic and Logic Units (ALUs) are basic components
in any processor.

tively. Similar to the Arbiter PUF, the ALU PUF response
y = (y0, . . . , y3) is generated by arbiters depending on which
ALU’s output signals arrive first. The PUF responses are
latched to special registers (implemetable by flip-flops) in
the processor. To ensure that both ALUs are stimulated
with the same input signals at exactly the same time, a
simple synchronization logic is used. Hence, the ALUs are
utilized both as ALUs and as a PUF by only requiring a
minimal hardware overhead (i.e., flip-flops and synchroniza-
tion logic). More specifically, our ALU PUF design is based
on the carry propagation in ripple-carry adders, which are
basic ALU components. Observe that the delay characteris-
tics of the path from the inputs xi and xi+4 to the outputs
oi and o′i, respectively, depend on the inputs xi−1 and xi+3
for 1 ≤ i ≤ 3 because carry bits in the ripple-carry adders
are propagated from the LSB side to the MSB side of the
full adders.
The ALU PUF is queried by using the add assembler in-

struction. More specifically, when the ALU is in the PUF
mode (i.e., not in the general program execution mode), the
add instruction reads the PUF challenge (operands) from
the registers inside the CPU and performs the add operation.
The time-difference between the availability of the resulting
output bits computed by each ALU is then used to derive
the PUF response. Depending on the operand bit-length of
the adders in the ALU, we can easily build ALU PUFs with
an arbitrary number of response bits.
In generic pipelined processor architectures, the memory

access stage is the critical path [25]. Thus, integrating the
components needed to use the ALUs as PUFs into the pro-
cessor has only a negligible timing performance impact.
Security Objectives. The most important properties of
PUFs and hence the (security) goals of the ALU PUF are ro-
bustness, unclonability and unpredictability [21, 1, 11]. Infor-
mally, robustness means that, when queried with the same
challenge x multiple times, the PUF returns a similar re-
sponse y with high probability. Physical unclonability de-
mands that it is infeasible to produce two PUFs that cannot
be distinguished based on their challenge/response behavior.
Unpredictability requires that it is infeasible to predict the
PUF response y to an unknown challenge x, even if the PUF
can be adaptively queried a certain number of times.
PUF Response Verification. There are two approaches
to verify the responses y of the ALU PUF: (1) using a
database of challenge/response pairs (CRPs) recorded be-
fore deployment of the ALU PUF and (2) using an emula-
tion PUF.Emulate() of the ALU PUF based on a simple PUF
model H [22] (e.g., gate-level delay table lookups and delay
additions) generated during the manufacturing process of
the ALU PUF. The drawback of the database approach is
its limited scalability since it requires storing a large num-
ber of CRPs for each PUF implementation. Further, due to
the limited size of the database, this approach allows only
for a limited number of authentications since CRPs should
not be re-used to prevent replay attacks. The emulation-
based approach overcomes these drawbacks but requires a
protected interface to read out the gate-level delays required
to emulate the PUF. This interface should be only accessi-
ble by a trusted entity (e.g., the PUF manufacturer) since
otherwise the adversary could read out the gate delays and
efficiently emulate the PUF, which would violate the unpre-
dictability property. One approach to realize this interface
in an ASIC implementation of the ALU PUF is to provide
a test interface that can be permanently disabled by, e.g.,
using fuses. For our FPGA-based prototype emulation we
did not implement such an interface as the gate-level delays
were known.
Error Correction. Since we use the PUF responses as
input to the attestation algorithm, we must correct errors
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Figure 3: Inter-chip HD results

input to a compression function that iteratively computes r
[2]. We adapted this algorithm to generate PUF challenges
xi and to take the output zi of PUF() as additional input to
the compression function in each round. Note that we omit
the details on generating r due to limited space. For more
details, please refer to the checksum algorithm in [31].

4. EVALUATION

4.1 Evaluation of the ALU PUF
Our evaluation results are based on a gate-level delay

simulation of the ALU PUF. We leverage the delay model
from [23] to calculate the gate-level delay under process vari-
ations. Our emulation uses the quad-tree process variation
model [4], which assigns different threshold voltage varia-
tions to all gates in all simulated chips and targets the 45 nm
technology node. Following [25], we assume that the dis-
tribution of the threshold voltage Vth in the chips follows
a Gaussian distribution N(µ, σ2) with σ

µ
= 0.1. We also

present inter- and intra-chip distance measurement results
of two ALU PUF implementations in two different FPGAs.
Unpredictability. We empirically assess the unpredictabil-
ity of the ALU PUF by means of the Hamming distance
(HD) between the responses y of different PUFs to the same
challenge x (inter-distance) [21]. Specifically, we count the
occurrences of each HD for 1, 000, 000 different challenges x.
Our inter-chip HD results are presented in Figure 3, which

shows both the inter-chip HD of the raw PUF responses
(before obfuscation) and the inter-chip HD of the obfuscated
PUF responses. The ideal inter-chip HD would be 16 bits
(50%). Before and after obfuscation, the average inter-chip
HD is 11.48 bits (35.9%) and 14.28 bits (44.6%), respectively.
The ALU PUF shows a fairly good unpredictability which is
comparable to other existing PUF designs [21], e.g., the Feed-
forward Arbiter PUF (38% inter-chip HD) [17]. Further, as
expected, the XOR-based obfuscation mechanism improves
the unpredictability of PUF responses.
Robustness. We measure the robustness of the ALU PUF
by means of the HD between the responses y of the same
ALU PUF with regards to same challenge x under differ-
ent operating conditions [21]. We consider three test cases
that can affect the intra-chip HD: voltage variations, tem-
perature variations and arbiter metastability. We examined
voltage variations from 90% to 110% of the nominal ALU
PUF supply voltage. Further, we consider operating tem-
peratures between −20◦C and +120◦C. Again, HDs are are
computed based on 1, 000, 000 different challenges x.
The intra-chip HD results of the raw PUF responses (i.e.,

without error correction and obfuscation) are shown in Fig-
ure 4. The ideal intra-chip HD would be 0 bits (0%). The
intra-chip HD between repetitive evaluations of the same
ALU PUF is 3.62 bits (11.3%), which is comparable to other
delay-based PUFs, e.g., the Feed-Forward Arbiter PUF (9.8%)
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Figure 4: Intra-chip HD results under voltage and
temperature variations and arbiter metastability

Table 1: FPGA implementation (16-bit ALU PUF)
Component LUTs Registers XORs BRAM FIFO
ALU PUF 94 80 32 0 0

Synchronization logic 9 7 0 0 0
Syndrome generator 1,976 880 0 3 0

Obfuscation logic 224 0 0 0 0
PDL logic 4,096 128 0 0 0
SIRC logic 2,808 1,826 0 38 2

[17]. The ALU PUF is quite robust even under extreme en-
vironmental conditions. This is because the ALUs’ symmet-
ric delay paths are very similarly affected, which compen-
sates for the effect of the operating conditions. Since the
redundant ALUs are in close proximity, the variations due
to systematic spatial variations are also minimal. Hence, the
main factor affecting the intra-chip HD is arbiter metasta-
bility. According to our simulation results and considering
the error correction mechanism used, our PUF exhibits only
a false negative rate of 1.53 × 10−07, which is sufficient for
most practical applications.
Implementation. We implemented the core parts of the
ALU PUF in Xilinx Virtex 5 XC5VLX110T FPGA devices.
The implemented PUF is based on a 16-bit model (instead of
32-bit) due to the resource constraints of the given FPGA.
As pointed out in [20], implementing two completely sym-
metric delay paths in FPGA is challenging. Hence, we em-
ployed programmable delay lines (PDLs) to tune the PUF
delay. Specifically, oi and o′i (where 1 ≤ i ≤ 16) from ALU 0
and ALU 1 are passed through 64 stages of PDL switches to
compensate for the skews in delays that occur due to the au-
tomated routing optimization performed by the Xilinx ISE
tools. The blocks’ placement is done manually to achieve
the maximally achievable symmetry of the delay lines. The
delay tuning process is carried out as described in [20]. By
changing the PDL inputs, we calibrate the delay of the two
symmetric delay paths so that on average the occurrence of
0 and 1 at each arbiter is about the same.
Table 1 summarizes the results from implementing our

ALU PUF from scratch (i.e., when one does not re-use an
existing ALU). The ALU PUF itself yields a significantly
low hardware overhead compared to the supporting FPGA
logic such as the PDL and SIRC logic which is used for PUF
data collection [5]. However, when implementing the ALU
PUF in ASIC, this supporting logic is not needed.
We also measured the inter- and intra-chip HDs of two

16-bit ALU PUF implementations on two different FPGA
boards. The inter-chip HD is 3.0 (18.8%) and 6.6 (41.3%)
bits without and with the XOR obfuscation, respectively.
The intra-chip HD is 2.9 bits (18.6%), which is a little higher
than in our simulation due to environmental fluctuations.
The FPGA measurement results are consistent with our sim-
ulation results.
Side-channel Attack Resiliency. It has been shown [27]
that most existing delay-based PUFs can be efficiently em-
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software attestation.
Other PUFs using existing on-chip structures, e.g., memory-

based PUFs [38, 9], have several limitations: (1) they only
support a small number of challenge-response pairs which
are used only for key generation and not for authentication,
and (2) they can be queried only directly after the power-up,
making it impractical to query them afterwards. In contrast
our ALU PUF design leverages redundant components in
microprocessors, which significantly reduces the hardware
overhead required for implementation.

6. CONCLUSION
We present ALU PUF, a novel PUF design which enables

a paradigm shift in secure software attestation. Our new
PUF design is based on the delay differences in redundantly
available components of microprocessors. ALU PUF is read-
ily integrated as trust anchor into the PUF-based attestation
scheme for embedded systems. We implemented the ALU
PUF in FPGA and demonstrated its good statistical prop-
erties and low hardware overhead. The ALU PUF-based
attestation scheme enables the secure (remote) attestation
of embedded devices and, in contrast to previous approaches,
allows impersonation attacks to be detected. Further, due
to tight coupling of the ALU PUF and the processor archi-
tecture, our PUF prevents overclocking attacks, which are
a threat to purely software-based attestation schemes. Our
new scheme provides a low-cost attestation mechanism tai-
lored to the resource-constraints of lightweight embedded
systems.
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