The Fusion of Secure Function Evaluation and Logic Synthesis

Siam U. Hussain, M. Sadegh Riazi, and Farinaz Koushanfar| University of California, San Diego

Secure Function Evaluation (SFE) requires the underlying function to be compiled to a Boolean logic circuit. Designing custom SFE compilers has been an active research area. However, intelligent adaptation of the Integrated Circuits (IC) synthesis tools outperforms these compilers. It is time for the custom compilers to embrace this trend.

In the era of big data, ensuring privacy of sensitive content is a standing challenge. While several heuristic methodologies for privacy-preserving computing have been suggested, due to the large space of possible breaches, it is hard to assure their resilience. Solutions based on provably secure cryptographic primitives hold a promise to provide privacy guarantees within the standard security model.

In 1986, the seminal work [1] by Yao introduced the Secure Function Evaluation (SFE) protocol named Garbled Circuit (GC) that allows any polynomial time two-party function to be computed efficiently without revealing the private inputs. The following year, a different approach to SFE was proposed in the Goldreich-Micali-Wigderson (GMW) [2] protocol. Over the years many subsequent enhancements made Yao’s protocol truly practical, while the GMW protocol has also been shown to be effective in some scenarios. A common property of both these protocols is that the underlying function is represented as a Boolean circuit, called a netlist. The secure computation is performed in a way such that the Boolean value associated with each wire in the netlist is shared among the two parties. Only for the output wires, the parties reveal their respective shares to learn the values associated with them. The key elements of these protocols are outlined in Fig 1.

One of the most crucial parts of executing a function through either GC or GMW is converting the behavioral description of the function to the netlist. On the one hand, several custom compilers supporting (or designing) various programming languages have emerged for addressing this issue. However, such custom compilers have been shown to have reliability issues and limitations in global optimization. On the other hand, techniques for interpreting a behavioral description in a Boolean format are widely researched for designing digital integrated circuits (IC). Design automation for the purpose of IC design is a true engineering success story; the tools have enabled us to scale our chips to billions of gates to support complicated tasks. There is a wide gap between the capabilities of conventional IC design automation tools to compile sophisticated functions and what could be achieved by the custom SFE compilers.

Our work in this area, called TinyGarble [3] bridges this gap by formulating GC netlist generation as an atypical circuit synthesis task which can be addressed and scaled with standard IC logic synthesis tools. Following the path of TinyGarble, Demmler et. al. showed that a similar approach also greatly enhances the performance of circuit generation for the GMW protocol [4]. In this paper, we summarize the recent advances following the paradigm shift introduced by TinyGarble and several novel applications that are enabled by connecting these two seemingly separate but synergistic technical areas. We start with a brief overview of the GC and GMW protocols, before delving into the details of circuit construction and synthesis by design automation tools along with exciting new results. We also provide a short history of the development of custom SFE compilers.

What is Garbled Circuit?
Formally, Yao’s GC allows two parties Alice and Bob to jointly compute a function \(z = F(x_a, x_b) \) on their private inputs \(x_a \) from Alice and \(x_b \) from Bob. The netlist of the function \(F \) consists of 2-input 1-output logic gates. Alice, assigns each wire in the netlist with two \(k \)-bit random keys corresponding to the values 1 and 0. For each gate, a garbled truth table is constructed by encrypting the keys...
for the output with the corresponding input keys. Next, she sends the garbled tables along with the keys for her input values to Bob. Bob obtains the keys corresponding to his input values through Oblivious Transfers (OTs) that allows him to retrieve the keys without revealing the values of his inputs. He then uses these input keys to evaluate the encrypted tables gate by gate and decrypt the keys associated with the value of each wire. However, the mapping of these keys to the actual values is known only to Alice. Thus together they share the secret value of each wire. At the final step, they reveal their respective shares for only the output wires to learn the output s.

The original work by Yao and a majority of the subsequent enhancements adopt a _honest-but-curious_ security model. In this model, both Alice and Bob follow the agreed upon protocol but may want to deduce more from the information at hand. Recent works have shown how to make Yao’s protocol secure in the _malicious_ security model where the parties may deviate from the correct protocol.

A number of optimizations to the GC protocol have been proposed, e.g., free-XOR [5], row reduction [6], half-gate [7], and fixed-key block cipher [8]. Among these, the most important one is free-XOR as it allows the evaluation of XOR, XNOR and NOT gates without costly cryptographic encryption and communication. Therefore, the primary optimization goal while generating the netlist for F is to minimize the number of non-XOR gates (AND, OR, NAND, etc.). Row-reduction and half-gate optimizations reduce the size of the garbled tables for non-XOR gates by 25% each.

GMW and BMR Protocols

In the GMW protocol, the value of each wire is split into two shares such that the actual value is XOR of these two. Each of Alice and Bob receives one share for each wire. Since the XOR operation is associative, they can locally XOR their respective shares of the input wires to compute the shares of the output wire of the XOR gates. Thus this protocol naturally supports free-XOR. For the non-XOR gates, however, Alice computes the output of each gate for all four possible combinations of the shares of the input wires held by Bob, and Bob receives one of them through OT. To minimize the number of communication rounds, all non-XOR gates at the same level of the netlist are evaluated in parallel. Thus, the round complexity of the GMW protocol depends on the circuit depth, as opposed to being constant like in the Yao’s protocol. However, in settings with low network latency, this protocol has been shown to have superior performance in some cases. More importantly, it scales better to problems involving more than two parties. Even though GC was designed for two-party computations, subsequent enhancement has extended this to multiparty settings, one of the most notable one being the Beaver-Micali-Rogaway (BMR) [9] protocol.

A Brief History of GC Compilers

Yao’s protocol drew the interest of researchers around the world upon its appearance in 1986. However, it was primarily considered a theoretical concept until the emergence of Fairplay [10], the first realization of GC, in 2004. Fairplay introduced the
Secure Function Definition Language (SFDL) to write the functions. The compiler converted the functions to a netlist in Secure Hardware Definition Language (SHDL) which is later executed through the Yao’s protocol. Since then, there has been a surge in the research on GC. A selected set of the most impactful works are shown on the timeline presented in Fig 2. In this section, we focus on the different compilers developed to perform SFE through the GC protocol. A brief description of the frameworks is provided in the inset.

Realization of a function through GC entails two major tasks: (i) the behavioral description of the underlying function is compiled to a netlist of Boolean logic and (ii) the netlist is executed via a garbling back-end. In the frameworks, PCE, KSS, CBMC-GC, TinyGarble and Frigate the two tasks are independent of each other. These frameworks provide more flexibility to the user as the netlist compiled by one framework can be executed by another one. Thus, the user can choose the best framework for each task. For example, the JustGarble framework [8] provided around 20× speed-up to the execution task by employing a fixed-key block cipher to garble the gates. This framework does not include the compiler. However, a netlist compiled by any of the above mentioned frameworks can be executed by JustGarble to benefit from its speed-up. In contrast to this, in Obliv-C and ObliVM, the two tasks are unified. The outputs of these frameworks are compiled binary of the function to be executed securely. For these frameworks to benefit from the optimization of JustGarble, the source codes of the frameworks need to be modified.

The ABY framework [11] provides...
a mixed-protocol that efficiently combines secure computation based on GC, GMW and Beavers multiplication triples based on arithmetic sharing. Similar to Obliv-C and ObliVM, this framework treats netlist generation and execution as a unified task. However, recently by Demmler et. al. have extended [4] the framework to accept externally generated netlists.

Custom-designed compilers enable users to write the program in a high-level language and provide a more user-friendly interface. However, such customized compilers for secure computation introduce their own Domain Specific Languages (DSLs) which usually have unfamiliar syntax, thus, diminishing their original goal. One of the most recent frameworks, Frigate [12] performed extensive research on the reliability of the current frameworks and found out that most of them suffer from reliability issues. For example, they reported that PAL, KSS, CMBC, Obliv-C, ObliVM, and PCF crashed on programs that should have been compiled correctly. Moreover, KSS, ObliVM, and PCF generated incorrect netlists. While many of these issues were later taken care of by the respective developers, this research exposed a serious reliability issue regarding the usage of these compilers.

Fusion of SFE and Logic Synthesis

Conventional IC logic synthesis transforms the behavioral description of a function to a netlist of Boolean gates. This concept can be traced back to as early as 1979 when IBM first started developing the Logic Synthesis System (LSS) [13]. Since then IC design automation and synthesis rose to become one of the most successful engineering ventures, as it has uniquely enabled the modern computing era. The logic synthesis and other automated IC design tools have raised designers’ productivity by several orders of magnitude. Indeed, while the computing and information revolution is mostly credited to Moore’s law scaling, the complexity hurdle has been addressed by the automated design tools. Contemporary tools and methodologies enable automation of IC design, verification and test of chips across various levels of abstraction and sophistication.

Table 1: Comparison of the No. of non-XORs of TinyGarble with Frigate

<table>
<thead>
<tr>
<th>Function</th>
<th>Frigate</th>
<th>TG</th>
<th>Improv.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum 1024</td>
<td>1,025</td>
<td>1,023</td>
<td>0.20%</td>
</tr>
<tr>
<td>Compare 16,384</td>
<td>16,386</td>
<td>16,384</td>
<td>0.01%</td>
</tr>
<tr>
<td>Hamming 160</td>
<td>719</td>
<td>159</td>
<td>77.89%</td>
</tr>
<tr>
<td>Mult 32</td>
<td>995</td>
<td>993</td>
<td>0.20%</td>
</tr>
<tr>
<td>MatrixMult</td>
<td>128,252</td>
<td>127,225</td>
<td>0.80%</td>
</tr>
<tr>
<td>5x5 32</td>
<td>10,383</td>
<td>6,400</td>
<td>38.36%</td>
</tr>
</tbody>
</table>

The task of generating efficient Boolean circuit (netlist) for GC is substantially similar to logic synthesis. For nearly three decades these two fields did not cross paths until the introduction of TinyGarble [3] in 2015. TinyGarble creates a set of libraries and optimization strategies for industrial logic synthesis tools such that they can efficiently be employed to generate an optimized netlist for GC. At the time of its publication, TinyGarble demonstrated superiority over the existing custom GC compilers. Recently, the Frigate [12] framework has shown to outperform all other previous compilers, except TinyGarble. In Table 1, the number of non-XOR gates in selected benchmark functions generated by these two frameworks are compared. Essentially, the key to TinyGarble’s efficiency is standing on the shoulders of a giant: IC logic synthesis. The synthesis tools that make TinyGarble a possibility are the same ones that enabled the design of contemporary ICs with billions of gates.

As mentioned in the previous section, the netlist generation and execution of GC can be run independently in the TinyGarble framework. The GC execution of TinyGarble supports secure two-party computation in the honest-but-curious model. However, the capability of its netlist generation tool-chain goes well beyond that. Currently, it supports netlist generation for the realization of the BMR protocol (github.com/cryptobiu/Semi-Honest-BMR) that supports secure computation involving more than two parties, and the realization of two-party GC in the malicious setting provided in the EMP-Toolkit (github.com/emp-toolkit). The methodology can easily be extended to other GC based protocols given they also support disintegration of netlist generation and GC execution.

Inspired by TinyGarble, Demmler et. al. employed logic synthesis tools to generate netlists for the GMW protocol. Since the round complexity of the GMW protocol depends on the depth of the netlist, they developed a tool-chain to optimize the netlist not only for size but also for depth. Their work showed a reduction of depth by up to 14% even over manually optimized netlists.

Both GC and GMW involve logic gates whose functionalities are fixed (e.g., AND, OR). Therefore, both TinyGarble and [4] employ ASIC synthesis tools. Dessouky et. al. [14] introduce protocols involving lookup tables (LUTs) which can be programmed to realize arbitrary functions. To generate the Boolean circuits, this work employs multi-input LUT-based synthesis tools which form the core of synthesis for FPGAs.

Note that while the logic synthesis tools have been shown to outperform custom compilers in terms...
of efficiency, development of practical privacy-preserving systems requires consideration of several other factors, e.g., language expressibility, richer programming paradigms, and accessibility to developers (please refer to [15] for a comprehensive study on these factors). Perhaps the holy grail of GC compilers would be one that combines the efficiency of logic synthesis tools with the versatility of programming languages.

Another significant contribution of [3] is introducing and leveraging the concept of the sequential circuit to GC. We elaborate this concept next.

![Fig. 3: The effect of the sequential representation of the circuit on the garbling time and memory footprint.](image)

Sequential Garbled Circuit

TinyGarble’s unique ability to garble sequential circuits enables scaling of the designs by leveraging the concept of a memory. As opposed to the combinational circuit, a sequential circuit has internal states stored in registers (flip-flops). At each clock cycle, the state of the circuit depends on the inputs at that cycle and the current state of the circuit. Consider a 32-bit adder circuit for example. The circuit can be represented as (i) a combinational circuit that takes two 32-bit numbers and outputs the 32-bit sum or, (ii) a sequential circuit, 1-bit full-adder that computes 1-bit of the sum at each clock cycle. This circuit is executed for 32 clock cycles to produce a 32-bit output. The state of the circuit is the carry of the previous clock cycle. In a general case, an n-bit adder can be realized using a l-bit adder module, executed for \(\left\lceil \frac{n}{l} \right\rceil \) clock cycles.

Describing a function as a sequential circuit provides a compact representation that can scale for large input sizes. For example, Fig 3 shows the memory footprint and garbling times for different values of \(l \) for realizing a \(2^{15} \)-bit adder. As can be seen, the amount of memory required for garbling of the sequential circuit decreases linearly with \(l \). A major benefit of reducing the memory footprint is that for several benchmark functions, TinyGarble can synthesize them to compact sizes that can fit within the cache. This compaction results in fewer cache misses and therefore a reduction in the garbling time which is evident in Fig 3. Note that for a certain value of \(l \), the drop in the execution time reaches a saturation point. At this point the netlist completely fits into the cache, and the number of cache misses is reduced to its minimum. Further reduction of the netlist size does not further improve the time. This saturation point usually occurs at a higher value of \(l \) for more complicated tasks with larger netlists.

The PCF framework also took a similar approach where it rolls a for-loop and repeatedly garble it, instead of unrolling it in a large circuit. However, sequential circuit description is a well-known and established approach that allows us to use industrial IC compilers to generate more optimized circuits, and at the same time, keep the garbling footprint small. The comparison in [3] shows that TinyGarble outperforms PCF by up to 85% in terms of the number of non-XOR gates for all the benchmarks. Moreover, sequential description enables several (previously unreported) functions to be efficiently garbled. For example, The TinyGarble framework has been employed to devise a scalable privacy-preserving solution for stable matching in [16], sub-string search [17], and deep learning [18]. Even more interestingly, the sequential format allows garbling a general purpose processor (CPU). This was not possible by the prior custom compilers, as no sizable CPU can be built as a non-sequential circuit (a circuit without states, a.k.a. combinational circuit). For the sake of brevity, we elaborate one application—stable matching in this section. In the next section we provide a brief overview of the garbled processor.

In stable matching, there are two groups of people where every member has a preference list to be matched to a person in the other group. The stability condition requires that there should be no two persons such that they prefer each other more than their already assigned partners. In secure stable matching, the goal is to ensure the privacy of the preference lists of the members. This has been seen as one of the most complicated tasks in privacy-preserving computation. The memory footprint of secure stable matching with combinational circuits cannot scale for real-world group sizes. The work in [16] presents a scalable solution to this problem by employing the sequential garbling introduced by TinyGarble. The circuit block diagrams of the combinational and sequential circuits are depicted in Fig 4. The combinational circuit requires \(O(n^2) \) sub-modules each comprising \(O(n^2 \log n) \) number of non-XOR gates where \(n \) is the number of people in each group. Since the combinational circuit has \(O(n^3 \log n) \) gates, it quickly reaches the limit of circuit synthesis tools. In contrast,
the sequential circuit only requires $O(n^2 \log n)$ non-XOR gates. Therefore, it provides scalability to the much higher set sizes. Moreover, garbling the sequential circuit requires significantly less memory.

Garbling A Processor

Custom-designed compilers usually require the user to write the program in an unfamiliar syntax. Moreover, they suffer from correctness and reliability issues as studied in [12]. An elegant solution to these problems is to have off-the-shelf (unmodified) standard compilers and compile user’s program to the binary code. This approach has the advantage that legacy-codes can be used with minimal modification and no special syntax is used. In order to securely evaluate the compiled binary code on user’s private data, one has to garble a general-purpose processor. In other words, the Boolean circuit garbled in the GC protocol is a general-purpose processor that includes instruction-memory, data-memory, and stack along with other components. The compiled binary itself is considered as an input to the processor by being loaded into the instruction memory. User’s private data is also loaded into the data memory. Therefore, by garbling the processor, the program is securely evaluated on users’ private input.

Naïve adaptation of garbled processor for SFE, however, incurs a large overhead. The reason is that for each instruction the entire processor circuit including instruction-fetch, instruction-decoding, control paths, etc. have to be garbled. Two solutions have been proposed to reduce this overhead: (i) static reduction [19] and (ii) dynamic reduction [20].

In [19], authors propose to create custom ALUs for different instructions and evaluate the corresponding ALU for each cycle. However, such coarse-grain optimization (instruction-level as opposed to gate-level) still incurs a significant overhead. To overcome these limitations, a gate-level reduction approach is proposed in ARM2GC that dynamically identifies gates that can be processed using public data, i.e., the compiled binary. In other words, ARM2GC determines which parts of the processor can be evaluated in plaintext and which parts need to be garbled. The decision is based on the instruction at each clock cycle and the public/private state of the processor. The latter depends on the previous instructions and how they have affected the public and private status of different parts of the processor.

It has been shown that ARM2GC requires $8.4E + 3$ and $49E + 3$ times less garbled non-XOR gates compared to [19] for computing Hamming distances with 32 and 512-bit inputs, respectively. In fact, the number of gates garbled in ARM2GC for different benchmarks is comparable or significantly lower compared to the high-level GC compilers like CBMC-GC or Frigate. In the ARM2GC framework [20], users can write the program in a standard language and compile using verified ARM compilers. The compiled program acts as public input to the ARM processor circuit. In contrast to custom compilers, ARM2GC relies on standard compilers that are rigorously tested and as a result is more reliable.

Adaptation of standard logic synthesis techniques to generate the netlist for Yao’s GC protocol along with the introduction of sequential GC provide a paradigm shift in the field of privacy-preserving computation. The results of four decades of research in the field of electronic design automation are made available to the security community. Leveraging the powerful IC synthesis tools for garble circuit compilation uniquely allows efficient and scalable realization of a number of exciting new privacy-preserving applications. In particular, it enables the execution of a general-purpose processor through the GC protocol. Recent advances in garbling a processor allow the users to write a function in any programming language and compute it efficiently through the GC protocol. The usage of standard and verified compilers for garbling eliminates the unreliability of custom compilers; opening the possibility of privacy-preserving implementation of services that entail extensive computation and massive data sets, e.g., secure search, neural network, navigation, and a lot more.

![Fig. 4: Combinational and sequential circuits for stable matching.](image-url)
References

Siam U. Hussain is currently a doctoral student at the Department of Electrical and Computer Engineering at University of California, San Diego. His research interests include privacy preserving computing and hardware security.

M. Sadegh Riazi is currently a doctoral student at the Department of Electrical and Computer Engineering at University of California, San Diego. His research interests include privacy preserving computing and machine learning.

Farinaz Koushanfar is the Professor and Henry Booker Faculty Scholar at the Department of Electrical and Computer Engineering at University of California, San Diego. She is the Director of Adaptive Computing and Embedded Systems (ACES) Lab and Co-Founder/Co-Director of Center for Machine Integrated Computing and Security (MICS). Her research focuses on massive data analytics in constrained settings and security and privacy for data-intensive computing.