
Rapid FPGA Delay Characterization Using Clock Synthesis and Sparse Sampling

Mehrdad Majzoobi, Eva Dyer, Ahmed Elnably, and Farinaz Koushanfar
Electrical and Computer Engineering Department

Rice University, Houston, Texas 77005
Email: {mehrdad.majzoobi, e.dyer, ahmed.elnably, farinaz}@rice.edu

Abstract—This paper introduces a set of novel techniques
for rapid post-silicon characterization of FPGA timing vari-
ability. The existing built-in self-test (BIST) methods work by
incrementing the clock frequency until timing failures occur
within the combinational circuit-under-test (CUT). A standing
challenge for industrial adoption of post-silicon device profiling
by this method is the time required for the characterization
process. To perform rapid and accurate delay characterization,
we introduce a number of techniques to rapidly scan the CUTs
while changing the clock frequency using off-chip and on-chip
clock synthesis modules. We next find a compact parametric
representation of the CUT timing failure probability. Using
this representation, the minimum number of frequency samples
is determined to accurately estimate the delay for each CUT
within the 2D FPGA array. After that, we exploit the spatial
correlation of the delays across the FPGA die to measure a
small subset of CUT delays from an array of CUTs and recover
the remaining entries with high accuracy. Our implementation
and evaluations on Xilinx Virtex 5 FPGA demonstrate that the
combination of the new techniques reduces the characterization
timing overhead by at least three orders of magnitude while
simultaneously reducing the required storage requirements.

I. INTRODUCTION

Scaling of CMOS to miniature feature sizes has provided
continuous advantages to digital integrated circuits by in-
creasing the device densities per unit area and reducing the
cost per computing function. Fabrication and operation of
these minuscule devices has become a big challenge. This
is because at the small scale, as devices reach the physical
limits of silicon, the fabrication technology faces increased
complexity. Due to the uncertainty in the manufacturing
process present in the state-of-the-art silicon technologies,
transistor properties and other device parameters are no
longer deterministic. The variations are likely to increase
for the smaller-scale pending technologies.

In conventional designs, yield loss mainly comes from
the following two sources: (a) functional yield loss because
of processing defects, and (b) timing yield loss because of
timing failures due to processing parameter variations. In
current FPGA technologies, the path timings are becoming
increasingly volatile, due to variations on path delay and
clock skew in manufactured chips. One may decrease the
timing yield loss by reducing the circuit sensitivity to
process variations and conservative timing, but then the
speed improvements in the underlying process technologies
are not fully exploited. Addition of pre-silicon timing yield

constraints and statistical timing models are of limited
help, as the exact post-silicon characteristics have variability
around their expected value.

Fortunately, a body of recent work has demonstrated that
the timing variations on FPGAs can be characterized and
tuned for. To measure the timing performance of components
on FPGA, methods for configuring each device to include
Built-In-Self-Test (BIST) circuitry were developed [1–3].
Post-silicon optimization and planning methods and tools
are being developed for exploiting the fluctuations in process
parameters to adjust the circuit performance in accordance
with the specific characteristics of each FPGA device [4].
Furthermore, post-silicon tuning has been demonstrated to
be effective in practice, improving the timing yield of FPGA
circuits [4, 5].

To perform post-silicon characterization, especially in fab-
rication lines where tens of thousands of ICs are fabricated
and shipped daily, the overhead required for testing and
timing characterization can be prohibitive. In addition to
requiring that the characterization process is fast, the process
must also be performed with minimal effort.

In this paper, we introduce novel methods for rapid
characterization of FPGA timings at the Look-up Table
(LUT) level, significantly improving the test times compared
to the available techniques, while maintaining high accuracy.
Our contributions are as follows:

• We introduce several methods for on-chip and off-chip
clock synthesis to rapidly change the clock frequency.
We then combine the clock synthesis methods with
three distinct architectures to efficiently characterize an
array of CUTs. The advantages and drawbacks of each
method are compared in detail.

• The timing failure rate signal from each CUT is
analyzed and a compact parametric representation is
introduced.

• We develop an efficient strategy to estimate the compact
timing parameters of the CUT with as minimal number
of measurements at distinct frequencies.

• We show that timings from a array of CUT form a low-
rank matrix due to the spatial correlation of the delays
across the FPGA die.

• Our rapid characterization method exploits this low-
rank property to recover all delays from a subset of
CUT delays in the array with high accuracy.

• We provide a working implementation of the newly
proposed techniques on a group of Virtex 5 FPGAs.
Our evaluation results demonstrate the effectiveness of
the new rapid characterization method in reducing the
test time by about three orders of magnitude.

The organization of this paper is as follows. After re-
viewing the related literature and methods on test and char-
acterization of timing variability in Section II, we provide
some background on manufacturing process variation and
matrix completion using rank minimization and its relevance
to the theory of sparse random sampling in Section III.
Next, we will describe the details of the timing extraction
circuitry in Section IV. In Section V, we present two on-
chip and off-chip clock synthesis techniques to determine
the most efficient way to extract timing information. Section
VI describes the characterization system used to scan and
read out information from a 2D array of CUTs on FPGA.
In Section VII, a compact parametric representation for the
probability of CUT timing failure is presented and utilized
to determine the minimum number of samples required for
accurate estimation of each CUT delay. In Section VIII, we
study the spatial correlation of delay variability across an
array of CUTs and exploit this attribute to recover the delays
of all CUTs within the 2D array with only a small subset of
the CUT delay measurements. Finally, we show a working
implementation of these techniques on Virtex 5 chips. We
conclude the paper in Section X.

II. RELATED WORK

In the past few years, a number of post-silicon FPGA
delay characterization methods were proposed. The earlier
work focused on using arrays of ring oscillators [6]. The
ring oscillators are interfaced with counters that meter the
operating frequency of a set of configurable logic blocks.
The limitations of this method include the low granularity
in timing measurements and the inability of characterizing
the impact of delay in clock networks. Testing methods for
FPGA delay faults are not proper for delay measurement
of nonfaulty devices. The goal in FPGA delay fault testing
is to determine whether devices, including interconnects
and logic components, have outstandingly larger delays
than a certain threshold [1, 7, 8]. Application-specific tests
for FPGA characterization are available but they cannot
be directly used for a general delay measurement [5].
Methods for profiling the FPGA clock variability based
on differential delay measurement circuitry were developed
[2, 3]. However, these methods exhibit a major limitation;
the test time for a large number CUTs takes a very long
time. The characterization results can be used for variability
compensation, post-silicon tuning, and variation-aware place
and route to improve performance and yield [2, 4, 9, 10].

The BIST structure employed in this paper was devel-
oped in [1, 3, 11–13] while other BIST methods for FPGA
characterization are also available [14]. The concepts behind

our rapid characterization method are generally applicable to
other BIST methods, but the implementation details would
be specific to each platform. To the best of our knowledge,
this is the first work that addresses the time complexity and
accuracy of the delay characterization and presents novel
methods for performing rapid characterization. In addition,
we address the trade off between characterization time and
accuracy.

III. PRELIMINARY

This section presents preliminaries on manufacturing pro-
cess variation, the use of matrix rank minimization for
matrix completion, and its connection with sparse random
sampling.

A. Process variation

Process variations are the fluctuations in the device pa-
rameters and characteristics caused by imperfections and
uncertainties in the fabrication process. The total process
variation can be viewed as the sum of inter-die and intra-
die variations. Inter-die variations refer to differences among
the devices on various dies and are constant within one
die. Intra-die variations, on the other hand, account for the
differences among devices on the same die. The intra-die
component can be further divided into spatially correlated
and uncorrelated random components. The uncorrelated
random variations are primarily caused by the fundamen-
tal intrinsic atomic-scale randomness of the materials that
make each device, while systematic correlated components
stem from unintentional shifts in processing conditions such
as mask errors, lithographic off-axis focusing, and reticle
stepper alignment errors [15]. Thus, the process variation
can be represented by Equation 1, where Pnom is the
nominal parameter value, ∆Pinter, is the inter-die variation
component, and ∆Pspatial(xi, yi) and ∆Prand(i) are the
spatially correlated and random components of intra-die
variation for device i respectively [16].

P = Pnom+∆Pinter+∆Pspatial(xi, yi)+∆Prand(i) (1)

The spatially correlated component of variation can be
modeled as the sum of systematic variations and correlated
random variations [17]. In CMOS technology, threshold
voltage (VTH) variations due to random dopant fluctuation
(RDF) make up a considerable portion of the random
component. Variations in thin film thickness (Tox), line-edge
roughness, gate length and width (Leff ,Weff) demonstrate
spatial correlations [15]. In this paper, we take advantage
of the spatial correlation present in process parameters to
perform sparse random sampling over the FPGA die to more
efficiently extract the variation information.

B. Sparse random sampling and matrix rank minimization

In traditional Nyquist sampling schemes, a signal of
interest must be sampled at a rate twice that of its highest

frequency component to perfectly reconstruct the signal
from the samples. An emerging field, known as compressive
sampling, shatters the Nyquist limit and enables sub-Nyquist
sampling rates when signals only occupy a small portion of
the total bandwidth.

Porting this simple example into a more general frame-
work, the total number of samples required to properly
represent a signal that is sparse in an arbitrary basis, is linear
in sparsity in the signal (the number of non-zero coefficients
used to represent the signal) [18] and logarithmic in signal
length. In other words, for very sparse signals, the number
of required samples can be much less than that required by
Nyquist theory.

Compressive sampling theory may be extended to other
low-dimensional signal models, such as manifold models
[19] and matrices that exhibit low-rank structure [20]. For
low-rank matrices, one may show that by sampling only a
small subset of the total entries in the matrix, the remaining
entries may be recovered with high accuracy [20]. In con-
cordance with compressive sampling theory, the number of
sampled entries scales linearly with the rank of the matrix. In
Section VIII, we will show how these results may be utilized
in the context of delay characterization across a FPGA array,
namely by sparse random sampling of entries from the entire
delay array and recovering the missing entries via a nuclear
norm minimization problem.

IV. DELAY EXTRACTION

To measure the delays of logic components inside FPGA,
the circuit shown in Figure 1 can be used as suggested
in [1, 3, 21]. The target component/interconnect delay to be
extracted is called the Circuit Under Test (CUT). Three flip
flops (FFs) are used in this delay extraction circuit: launch
FF, sample FF, and capture FF. The clock signal is routed
to all three FFs as shown on the figure.CUT DFFLaunch Flip Flop Sample Flip Flops Capture Flip FlopsDFF DFFTClock e

Figure 1. Delay characterization circuit.

Assuming the FFs in Figure 1 were originally initialized
to zero, a low-to-high signal is sent through the CUT by
the launch FF at the rising edge of the clock. The output is
sampled T seconds later on the falling edge of the clock. If
the signal arrives at the sample flip flop before sampling
takes place, the correct signal value would be sampled,
otherwise the sampled value would be different indicating a
timing error. The actual signal value and the sampled value
are compared by an XOR logic and the result will be held
for one clock cycle by the capture FF.

A more careful timing analysis of the circuit reveals the
relationship between the delay of the CUT (tCUT), the clock
pulse width (T), the clock-to-Q delay at the launch FF
tclk2Q, and the clock skew between the launch and sample
FFs tskew. The setup/hold of the sampling and capture FFs
are denoted by tsetS , tholdS , tsetC , and tholdC respectively.
The time it takes for the signal to propagate through CUT
and reach the sample flip flop from the moment the launch
flip flop is clocked is represented by tP . Based on the circuit
functionality in Figure 1,

tP = tCUT + tclk2Q − tskew. (2)

Therefore, if there are no timing errors in the circuit, the
following relationships must hold:

tholdC < tP < T − tsetS (3)

The errors start to appear if tp enters the following
interval:

T − tsetS < tP < T + tholdS (4)

The flip flops enter a metastable operation because of the
setup and hold time violations and the sampled value be-
comes nondeterministic. The probability that the metastable
state resolves to a 0 or 1 is a function of how close T is to
tP . For instance, if T and tCUT are equal, the signal and the
clock simultaneously arrive at the sample flip flop and the
circuit would produce an error 50% of time. The probability
of observing timing error increases as tp gets closer to the
upper limit of Inequality 4. If the following condition holds,
then timing error happens every clock cycle:

T + tholdS < tP < 2T − (tsetC + tXOR) (5)

Without loss of generality, in our implementation each
CUT consists of 4 LUTs (where each implement an inverter).
The circuit in Figure 1 is pushed into two slices (one CLB).
The CUT delay can roughly be a representative delay for
the FPGA slice where it belongs. We refer to the circuit
in Figure 1 as characterization cell or simply cell in the
remainder of the paper.

V. CLOCK SYNTHESIS

Changing the clock’s pulse width is a precursor for our
characterization. Thus, finding efficient methods to change
the clock pulse width could yield significant savings in delay
characterization. In this section, we discuss two methods for
clock generation using on-chip and off-chip components. We
then explain how each method can be integrated into the
characterization system.

A. Linear frequency sweep with off-chip components
Using off-the-shelf and inexpensive function generators,

one can easily perform a linear sweep from a low frequency
(fmin) to a high frequency (fmax) in a continuous fashion
(see Figure 3 (a)). Notice that in practice, there is often
a minimum recovery time between each sweep (denoted by
Ttrans). Although many inexpensive generators can not syn-
thesize high frequencies (usually the maximum frequency
is the range of 20MHz), using the PLLs inside the FPGA,
both fmin and fmax can be shifted up to any desired range.
Here, we first investigate the relation between the number
of generated clock pulses and the sweep time, the pulse
number and the corresponding pulse width. Later, we will
show how to efficiently and quickly characterize a large
group of logic components with a single (or a few) linear
sweeps. Let us assume that the clock frequency to the system...

min

1

f min

1

f ε+ min max

1 1

cpf N fε
=

+

sw eepT

xT

min

1

f xε+

Figure 2. Linear sweeping of the clock frequency.

is swept linearly and continuously in Tsweep seconds from
fmin = 1

2Tmax
to fmax = 1

2Tmin
, where Tmin < tp < Tmax

(see Figure 2). The relationship between total number of
clock pulses in each sweep, Ncp, the sweep time, Tsweep,
initial frequency, fmin, and terminal frequency, fmax can be
derived from Figure 2 and is given in Equation 6:

Tsweep(Ncp) =

Ncp∑
k=0

1

fmin + k × ϵ
, (6)

where ϵ is given by

fmax = Ncp × ϵ+ fmin. (7)

By replacing ϵ in Equation 6 from Equation 7 and using
Riemann method, the sum can be approximated by definite
integral as given in Equation 8.

Tsweep =

Ncp∑
k=0

1

fmin + fmax−fmin

Ncp
× k

=
Ncp

fmax − fmin

∫ fmax

fmin

1

x
dx

= Ncp ×Kc (8)

where, Kc = ln(fmax)−ln(fmin)
fmax−fmin

. The goal is to determine
the width of the x-th clock pulse in Figure 1. The time at
which the x-th clock width appears during the sweep (Tx)
can be determined by Equation 9.

Tx =
x∑

k=0

1

fmin + ln fmax−ln fmin

Tsweep
× k

. (9)

By knowing Tx, the clock pulse width associated with the
x-th clock cycle can be easily calculated using the following
linear interpolation:

fx = (fmax − fmin)×
Tx

Tsweep
+ fmin. (10)

In practice, we use a counter to count the clock pulses.
The value of the counter is retrieved, every time the output
of the characterization circuit is scanned. Then, by using the
transformation in Equations 9 and 10, we can easily convert
the recorder clock pulse number to the corresponding clock
pulse width.

B. Frequency sweep with on-chip PLLs

Many modern FPGAs are equipped with built-in clock
management modules such as PLLs and DCMs. However,
unlike linear sweeping, the frequencies generated with PLLs
are discrete. Using a set of PLLs in series, as shown in [1],
a large number of frequencies can be synthesized with fine
resolution. Dynamic reconfiguration of the PLLs settings
(i.e. division and multiplication coefficients) can be used to
switch the clock frequency during the operation. However,
dynamic reconfiguration of PLLs and DCMs requires putting
the circuit to halt state. In addition, as illustrated in Figure
3 (b), changing the PLL frequency incurs a time overhead
defined by the frequency/phase lock time. For instance, the
PLL nominal lock time in Xilinx Virtex 5 FPGAs is about
100µs [22]. Therefore, any change in frequency is followed
by partial reconfiguration time plus PLL phase lock time. In
order to reduce the time overhead, some level of pipelining
can be introduced among a group of PLLs such that a PLL
whose phase and frequency has already locked is used while
another one is still in the locking process.fmaxfmin Tsweep Ttrans f1 Ttrans TimeTimef2f3f4(a) (b)
Figure 3. Clock synthesis with (a) linear frequency sweep, and (b) on-chip
PLLs.

VI. CHARACTERIZATION SYSTEM

So far, we have only dealt with characterization of a single
CUT and methods for changing the clock frequency. The
system shown in Figure 4 can be used to characterize the
delays of an array of CUTs on the FPGA. Each cell in
the array (square in Figure 4) contains the characterization
circuit shown in Figure 1. There is a number of techniques
that can be considered for sweeping the clock frequency
and scanning the characterization cells. In the following,
we present the system architecture for each technique and

discuss the implementation and characteristics time overhead
for each technique. We investigate the following three char-
acterization techniques:

• linear sweep with serial output scanning,
• using PLL with grouped output scanning,
• linear sweep with grouped output scanning.

Address Decoder Error CounterControllerGlobal Clock WriteCell Address Clock Pulse Counter MemoryClear
….….….….…. …. …. …...Cell AddressClear

CLB Slice
Figure 4. The architecture for chip level delay extraction.

A. Linear sweep with serial output scanning

This technique uses an external function generator to
linearly sweep the intended frequency range. The cells are
scanned in sequence such that one cell is enabled at a time
and undergoes a single sweep. The address decoder points
to a new cell in each frequency sweep. The system needs
to wait T linear

trans seconds (i.e., recovery time) for the clock
generator to begin a new sweep. At each distinct clock
frequency, the timing errors from each cell are accumulated
over 2w clock pulses using an w-bit pulse counter. If Nf

is the desired number of distinct frequency points per cell
per sweep, the clock generator should then make Nf × 2w

clock pulses in each sweep. The total time needed for
characterization can be computed by Equation 11, where
Ncells is the number of cells in the characterization system,
and Kc is the coefficient that converts number of pulses to
sweep time as defined in Section V.

Tchar = Ncells ×
(
Nf × 2w ×Kc + T linear

trans

)
. (11)

Note that since only one cell is being considered for each
sweep, the error counter can be shared among all the cells.

B. Using PLL with grouped output scanning

This technique uses the FPGA’s internal PLLs to generate
Nf pre-calculated distinct frequencies. After tuning the
clock to a known frequency, 2w clock pulses are sent to
all the cells at the same time. Each cell contains a w-
bit error counter to accumulate the errors. Then, the cells

will be disabled to begin writing the error values to the
memory. The error values for the characterization cells are
read in groups of k cells (k is determined by the number
of bits which can be written to the memory in a single
clock cycle). Therefore, w×Ncells

k clock cycles are needed
to completely save the parameters for a system with Ncells

cells. The total characterization time for this approach can
be calculated using Equation 12, where fave is the average
operating frequency:

Tchar = Nf ×

(
2w + w×Ncells

k

fave
+ TPLL

trans

)
. (12)

The main problem with this approach is the extra overhead
of reconfiguring the PLL plus the lock time (TPLL

trans) which
is in the order of 100µs in modern FPGAs [22] (see Figure 3
(b)). Additionally, this solution requires a more complex
structure because of the necessary PLL frequency-changing
control circuitry.

C. Linear sweep with grouped output scanning

This technique integrates the previous two approaches.
The idea is to use an external function generator like the
first technique, sweeping all the cells at the same time
while reading the error counters from the cells in a grouped
manner, like the second technique. This solution does not
require extra control circuitry as in the second approach.
The main advantage of this approach is that the sweep time
can be adjusted so that the system can be characterized in
one sweep. Similar to the second case, each cell includes
a w-bit error counter to accumulate the number of error
occurrences in 2w clock pulses. Succeeding 2w clock pulses,
the system disables all the cells, i.e., it stops recording new
errors. After disabling all characterization cells, we have
the error counters inside the cells loaded with the number
of errors that occurred in the short burst of clock pulses.
With the capability to write k − bits at the same time at
each clock cycle to the memory, for a Ncells cell system,
w×Ncells

k more clock pulses are needed to record all the
values of the error counters inside the characterization cells.
Thus, the total characterization time for this approach can
be calculated using Equation 13:

Tchar = Nf ×
(
2w +

w ×Ncells

k

)
×Kc. (13)

In addition, this technique uses a counter that records
the number of clock pulses in one sweep. The value of
this counter is recorded every time the characterization
system gets disabled. This value can be used to calculate
the frequency to which these error counters correspond as
explained in Section V.

The characterization time required by the second and third
technique is comparatively lower than the first technique.
The third technique is much faster than the second PLL

based technique, however, its application depends on the
availability of off-chip clock synthesizer to perform linear
sweeps. In general, the system needs to store w − bit for
each cell at each frequency, and a l-bit frequency index from
the clock counter/PLL coefficients. The size of the counter
should be large enough to avoid overflow when counting
the clock pulses in a single sweep. Thus, the total needed
memory is Nf × (Ncells × w + l).

VII. CUT DELAY CHARACTERIZATION WITH MINIMAL
MEASUREMENTS

In many practical applications, the effort required to
collect a full sampling of a signal or phenomenon of interest
may be prohibitive. In the case of timing variability char-
acterization of FPGAs, a sweep across different frequency
points must be performed in order to extract the delay
of each CUT. The number of distinct clock frequencies
(Nf) and the clock pulses used at each frequency (2w)
determines the overall amount of time and memory required
to characterize each CUT. In this section, we introduce a
compact parametric representation for CUT timing failure
probability as a function of the input clock frequency. We
then use the derived formulation to accurately estimate the
CUT delay by trying minimal number of distinct frequecies
and clock pulses at each frequency.

The circuit in Figure 1 can be viewed as a system with
an analog input (clock pulse width) and a digital binary
output. The probability of output being zero or one is a
function of the input clock pulse width. It can be shown that
this probability can be accurately modeled by a Gaussian
CDF whose mean is equal to tp and standard deviation is
related to the setup/hold time of the sample flip flop. The
Gaussian nature of the error probabilities can be explained
by the central limit theorem [21]. Equation 14 shows the
parameterized error probability function:

ftp,σp(T) = Q(
tp − T

σp
), (14)

where Q(x) = 1√
2π

∫∞
x

exp
(
−u2

2

)
du. Our goal is to

estimate tp and σp by collecting a set of data points (Ti,ei);
where ei ∈ {0, 1} is the i-th error flag recorded when
the clock pulse width equals Ti; i=1,2,...,M ; and M is the
total number of measurements. The data points can also be
collected for the same clock frequency multiple times. In
other words, the input to the cell Ti can be repeated for
r = 2w ≥ 1 times and averaged to reach a higher resolution
at each point. We denote the normalized accumulated error
for the input Ti by eri , where eri ∈ {0, 1/r, 2/r, ..., 1}. The
delay parameters are estimated by least-squares fit:

(tp, σp) = argmin||er − ftp,σp(T)||2 (15)

The concept is demonstrated in Figure 5, where y-axis
shows the CUT timing failure probability and the x-axis
represents the input clock width (T). Two sampling scenarios

1.205 1.21 1.215 1.22 1.225 1.23
0

0.2

0.4

0.6

0.8

1

 Input Clock Pulse Width (ns)

 P
ro

b
ab

ili
ty

 o
f

ti
m

in
g

 e
rr

o
r

 1 sample at 2.34ps steps*

 Gaussian Fit*

 256 samples at 1.17ps stepsÅ

 Gaussian FitÅ

 Original error probability

Figure 5. The estimated error signal (y-axis) versus the input clock pulse
width (x-axis) reconstructed from (a) 16 samples; and (b) 64 samples.

are compared. In the first scenario, the frequency points
are equally spaced at 2.34ps and one clock pulse is sent
to the cell at each clock frequency. In the other scenario,
the frequency points are equally spaced at 1.17ps and 256
clock pulses are repeated to obtain the accumulated error at
each clock frequency. A Gaussian curve is fit to the collected
error values. In Figure 5, both the original and the estimated
curve are shown on the plots, but they are very close to
each other demonstrating a low estimation error while the
second scenario takes 512 times longer. We argue here that
the estimation accuracy is less sensitive to the number of
repetitions than to the number of frequency samples. In the
experimental results, we demonstrate that with a fixed budget
for total number of tests on the circuit, having more samples
in different frequencies results in smaller estimation error
than having less frequency samples with higher resolution
(repetition) for each sample.

VIII. MINIMIZING THE NUMBER OF MEASUREMENTS
COLLECTED ACROSS THE ARRAY

In the previous section, we discussed ways to minimize
the number of measurements required to extract the delay
of each CUT. In this section, we describe how recent results
in rank minimization and matrix completion [20] may be
leveraged to minimize the number of CUTs that must be
characterized across an array of CUTs, while still enabling
recovery of the timing variability across the entire FPGA
die.

Let us begin by forming a 2D matrix D ∈ Rn×n, where
the {i, j} entry contains the extracted delay of the CUT
inside the {i, j} cell (see Figure 4) in the FPGA array.
The question we address is whether a sparse sampling of
the n2 entries in this matrix are sufficient to recover the
missing entries in the array with high accuracy. Recovering
the missing entries from this sparse sampling is an ill-posed
problem because there are infinitely many n × n matrices
entries can perfectly agree with the known observed entries.
Fortunately, the low rank structure of the timing variability
across the array of CUTs can be leveraged to restrict the
space of possible solutions. The low rank structure of the

CUT delay array is a consequence of the spatial correlation
present in process variation.

The problem of recovering a low rank matrix from a
sparse sampling of its entries, was recently studied in [20].
The authors prove that if the number of entries sampled from
a n× n matrix obeys,

m ≥ Cn1.2R log(n), (16)

where C is a constant, a convex optimization routine will
recover the underlying rank R matrix with high probability.

In order to determine the number of CUTs that must be
sampled from across each FPGA array, we must first show
that the delay arrays have low rank. In the next section, we
analyze the structure of the singular values of a collection
of delay arrays and show that for all of the FPGAs we
examined, their corresponding delay matrices are of very low
rank. We will then enforce this structure when recovering the
delay arrays from a subset of measurements from across the
chip.

A. Analysis of correlations across cells in the delay array

In this section, we study the spatial correlation of delay
measurements for an array of neighboring cells which span
the extent of the FPGA fabric. To do this, we use measure-
ment data collected from a set of 12 Xilinx Virtex 5 chips.
Strong correlations among the delays in cells, especially
in the vertical and horizontal directions, are present in all
of the chips we examined. In Figure (6), we show a few
examples of the types of spatial structure observed across
the entire array of measurements. With a standard tool like
principal components analysis (PCA), we can study the
structure and correlation in the array more rigorously. To
do this, we first find a singular value decomposition of our
delay matrix D = UΣVT, where Σ ∈ Rn×n is a diagonal
matrix with entries corresponding to the singular values of

0 5 10 1510
−3

10
−2

10
−1

10
0

M
a
g
n
it
u
d
e
 o
f
S
o
rt
e
d
 E
ig
e
n
v
a
lu
e
s

 (a) (b) (c) (d)

)

)

)

)

Chip (a

Chip (b

Chip (c

Chip (d

Figure 6. (Top) Examples of delay matrices obtained via our characteriza-
tion method; (Below) the sorted magnitude of each array’s corresponding
eigenvalues.

D in descending order. The columns of V ∈ Rn×n form
an orthonormal basis that spans our input space and the
columns of U ∈ Rn×n to form a basis over our output
space.

In Figure (6), we show the magnitude of the singular
values of D for delay matrices from four different FPGA
devices. The quick decay of the singular values demonstrates
that the delay matrices are indeed of low rank.

B. Recovering delay arrays from incomplete measurements

Now that we have confirmed that the array of CUT delays
are of low rank, we will now discuss how to leverage this
structure to recover the timing variability across the FPGA
die from only a sparse sampling of the array. After collecting
a small subset of measurements from the array, the indices
of these entries may be stacked into the index set Ω.

To recover the full delay array, we seek the lowest rank
matrix that agrees with all of the observed entries,

min
A

rank(A) s.t. Ai,j = Di,j ∀{i, j} ∈ Ω, (17)

where Ω is an index set containing the indices of all the
sampled entries in D, and A is the low rank matrix that we
approximate D by.

If a sufficient number of measurements is taken in accor-
dance with Equation (16), it can be shown that the following
convex relaxation of the rank minimization problem will
recover the original array D exactly.

min
A

∥A∥⋆ s.t. Ai,j = Di,j ∀{i, j} ∈ Ω, (18)

where ∥A∥⋆ is the nuclear norm or trace norm of A. The
nuclear norm may also be written as the absolute sum of the
singular values of A.

Due to the strong correlations in all of the D matrices
that we examined, solving this nuclear norm minimization
problem allows us to recover a low rank matrix A that
effectively characterizes the delay variations across the entire
FPGA. We report the typical number of measurements
required for this recovery in Section IX-C.

IX. EXPERIMENTAL EVALUATIONS

For delay characterization, the system shown in Figure 4
is implemented on the Xilinx Virtex 5 FPGA. The systems
contains a 32×32 array of characterization circuitry as
shown in Figure 1. A 1-bit counter is placed inside each cell
that disables the FFs in the cell after one clock cycle until
the counter is reset. The CUT inside the characterization
circuit consists of 4 inverters each being implemented using
one 6-input LUT. The characterization circuit is pushed into
2 slices (one CLB) on the FPGA. In fact, this is lower limit
on number of slices that can be used to implement each
characterization circuit. This is because interconnections
inside the FPGA forces all the flip flops inside the same slice
to use either the clock’s rising edge or its falling edge. Since

the launch and sample flip flops must operate on different
clock edges, they cannot be placed inside the same slices.
Figure 7 shows the placement of CUTs on the FPGA. The
red line on the figure shows the clock network distribution.
Notice that the clock delay skew (tskew) between the launch
and sample flip flops is minimal because the branching of
the clock interconnection happens at minimum distance to
the flip flops. Also, it can be seen the CUTs are pushed into
two slices in one CLB.

SliceSwitch BoxClock NetworkCLB

Figure 7. The placement of characterization cells on the FPGA and the
clock distribution.

We use an ordinary desktop function generator to sweep
the clock frequency from 10MHz to 15MHz and afterwards
shift the frequency 34 times up using the PLL inside the
FPGA. The measured accumulated error values are stored
on a logic analyzer and the data are transferred to computer
for further processing. Notice that the storage operation can
easily be performed without the logic analyzer by using
any off-chip memory. The system is implemented on twelve
Xilinx Virtex 5 XC5VLX110 chips. The characterization
system in total uses 2048 slices for the characterization
circuit array and 100 slices for the control circuit out
of 17,280 slices. The experiments were run under normal
operational conditions, i.e., room temperature and supply
voltage of 1 volts.

A. Sampling rate and accuracy

Next we examine the estimation accuracy of the CUT
delay tp and flip flop transition window width σp (see Equa-
tions 2 and 14) for a fixed number of total measurements
(tests) on each characterization circuit. Since the actual CUT
delay values on FPGA is unknown, it is impossible to find
the estimation error through measurement. In order to find
the estimation error, we simulated the characterization circuit
and sampled the simulated system instead. The simulated
system follows the behavior expressed by Equation 14. The

simulated system takes the measured delay from FPGA
as input and reproduce the same indeterministic random
behavior as the actual system. Figure 8 (a) shows the
estimation error versus the number of frequency points uni-
formly spaced between Tmin=1ns and Tmax=1.4ns. Tmin

and Tmax are bounds on the smallest and largest delays
derived from the distributions in Figure 9 (a) over all chips.
The total number of measurements equals the number of
frequency points times the number of repetitions for each
sample point, i.e., Nf × 2w. As it can be seen in Figure
8 (a) very low estimation error can be achieved by taking
256 frequency samples and 1 repetition for each sample.
Figure 8 (b) shows the same results for σp. The estimation
error follows the same descending trend as the number of
distinct frequency points and repetitions at each frequency
are increased.

4 8 16 32 64 128 256 512 1024 2048

10
−1

10
0

10
1

 Number of frequency sample points (N
f
)

 l
1
 e

s
ti

m
a
ti

o
n

 e
rr

o
r

(%
)

 Total Meas. = 2048
 Total Meas. = 1024
 Total Meas. = 512
 Total Meas. = 256
 Total Meas. = 128

(a) Estimation error for tp

4 8 16 32 64 128 256 512 1024 2048
10

20

30

40

50

60

70

80

 Number of frequency sample points (N
f
)

 l
1
 e

s
ti

m
a
ti

o
n

 e
rr

o
r

(%
)

 Total Meas. = 2048
 Total Meas. = 1024
 Total Meas. = 512
 Total Meas. = 256
 Total Meas. = 128

(b) Estimation error for σp

Figure 8. Normailized ℓ1 estimation error for fixed number of total
measurements, and different number of distinct frequency points (Nf) and
repetitions (2w).

B. Delay measurement

Figure 9 (a) and (b) show the distribution of measured
propagation delays (tp) and transition slope (σp) for the
twelve XC5VLX110 chips. The observed level of timing
variability across all the chip has a standard deviation of
5% (of the nominal value). Notice that the transition slope
parameter is smaller than 10ps at all chips. The data is
collected with high accuracy using 256 frequency points and
one repetition for each sample.

1.1

1.2

1.3

1.4

1 2 3 4 5 6 7 8 9 10 11 12
 Chip Number

 t
p
 (

n
a

n
o

 s
e

c
o

n
d

s
)

(a) Distribution of tp

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 11 12
 Chip Number

 σ
p (p

ic
o

se
co

nd
s)

(b) Distribution of σp

Figure 9. Distribution of the measured delays, tp (a) and the transition
slope, σp (b) for all 12 Virtex 5 FPGAs.

C. Recovery of delay arrays

To solve the nuclear norm minimization problem in Equa-
tion 18, we used CVX, a general-purpose package for speci-
fying and solving convex programs [23]. Note that we have
already performed delay measurement across the full CUT
array and use these full samplings to study the performance
of our sub-sampling strategy. Next, a subset of the delays
in the array are selected randomly to form an incomplete
matrix. Then, by using the rank minimization and the fact
that the underlying delay matrix is low rank, we attempt to
recover the missing entries based on the known entries. In
Figure 10, we show the progressive reconstructions of the
missing CUT delays for one chip as 20% to 100% of the
number of cells are measured. The delays shown next to the
colorbar are in nano seconds.

1.16

1.18

1.2

1.22

1.24

1.26

1.28

1.3

100 % 90 % 70 %

50 % 30 % 20 %

Figure 10. Progressive reconstructions of the delay matrix for a single
FPGA.

The recovery error of the missing entries in the array is
computed as,

er =
1

|Ω̄|
∑

{i,j}∈Ω̄

| Ai,j −Di,j |
Di,j

, (19)

where er is the normalized recovery error, Ω̄ is the set of
indices of missing entries, |Ω̄| is the cardinality of the set
Ω̄, or basically the number of missing entries, A is the
recovered delay from solving rank minimization, and D is
actual value of the missing entry. In Figure 11, we show the
normalized recovery error of the missing CUT delays versus
the percentage of the measured CUT delays for all 12 chips
under study. To ensure a reconstruction error of less than
2%, at least 20% of the total CUTs must be measured. The
trend of the reconstruction error for all chips suggest that as
larger number CUT delays are measured, the reconstruction
error of the missing entries will be smaller.

10 20 30 40 50 60 70 80 90

2

3

4

5

6

 Percentage of scanned cells

 R
e

la
ti

v
e

 r
e

c
o

v
e

ry
 e

rr
o

r
(%

)

Figure 11. Reconstruction error versus percentage of the measured cells.
Each curve corresponds to one of the 12 chips under study.

D. Characterization speed

Table I shows the characterization time and the memory
size required to store the data for the 32×32 array in our
experiment and also for characterizing the largest Virtex 5
FPGA for both grouped output approach with linear and
PLL clock generation techniques. The parallel BIST method
proposed in [1] characterizes an array of 52 × 16 cells
in 3 seconds and requires 13kbit of memory while the
results in Table I suggest an improvement of three orders
of magnitude in characterization time. Also considering the
results in Secion IX-C and by measuring 50% of the cells
instead of the whole array, the run times and the memory
sizes in Table I will be halved.

X. CONCLUSIONS

This paper presented several contributions to rapid char-
acterization of the propagation delays of FPGAs building
blocks. We proposed techniques to minimize the time over-
head of varying clock frequency during the characterization

Linear Sweep

Nf

Ncells

1024 51840
Tchar Mem. Tchar Mem.

16 1.08µs 16.25kbit 51.4µs 810.25kbit
256 17.24µs 260kbit 0.822ms 12.66Mbit

PLL

Nf

Ncells

1024 51840
Tchar Mem. Tchar Mem.

16 1.6ms 16kbit 3.2ms 810kbit
256 26.1ms 256kbit 50.9ms 12.66Mbit

Table I
THE CHARACTERIZATION TIME AND MEMORY SIZE.

using different the clock synthesis methods and system
architectures. Next, by analyzing the timing failure prob-
ability from a cell, we introduced a compact parametric
model for it, and then sparsely sampled it to estimate
the timing parameters. The third method considered the
spatial correlation of the timings across the FPGA array to
recover all the delays from a subset of measurements with
a high accuracy. Evaluation results after implementing the
methods on Xilinx Virtex 5 FPGA show the effectiveness
of the proposed techniques in characterizing the FPGA cell
delays with three orders of magnitude improvement in the
characterization time while maintaining high accuracy.

REFERENCES

[1] J. S. J. Wong, P. Sedcole, and P. Y. K. Cheung, “Self-
measurement of combinatorial circuit delays in FPGAs,”
ACM Transactions on Reconfigurable Technology and Sys-
tems, vol. 2, no. 2, pp. 1–22, 2009.

[2] P. Sedcole, J. S. Wong, and P. Y. K. Cheung, “Modelling and
compensation for clock skew variability in FPGAs,” in In-
ternational Conference on Field-Programmable Technology,
2008, pp. 217–224.

[3] P. Sedcole, J. Wong, and P. Cheung, “Characterisation of
FPGA clock variability,” in Annual Symposium on VLSI,
2008, pp. 322–328.

[4] P. Sedcole, S. P. Wong, and P. Y. K. Cheung, “Compensating
for variability in FPGAs by re-mapping and re-placement,” in
International Conference on Field Programmable Logic and
Applications, 2009, pp. 613–616.

[5] M. Tahoori and S. Mitra, “Application-dependent delay test-
ing of FPGAs,” IEEE Transaction on CAD, vol. 26, no. 3,
pp. 553–563, 2007.

[6] X. Li, F. Wang, T. La, and Z. Ling, “FPGA as process
monitor-an effective method to characterize poly gate CD
variation and its impact on product performance and yield,”
IEEE Transaction on Semiconductor Manufacturing, vol. 17,
no. 3, pp. 267–272, 2004.

[7] E. Chmelar, “FPGA interconnect delay fault testing,” in
International Test Conference, 2003, p. 1239.

[8] M. Abramovici and C. E. Stroud, “Bist-based delay-fault
testing in FPGAS,” Journal of Electronic Test, vol. 19, no. 5,
pp. 549–558, 2003.

[9] L. Cheng, J. Xiong, L. He, and M. Hutton, “Fpga performance
optimization via chipwise placement considering process vari-
ations,” 2006, pp. 1–6.

[10] H. Onodera, “Toward variability-aware design,” in Symposium
on VLSI Technology, 2007, pp. 92–93.

[11] P. Sedcole and P. Y. K. Cheung, “Within-die delay variability
in 90nm FPGAs and beyond,” in International Conference
on Field-Programmable Technology, 2006, pp. 97–104.

[12] J. S. Wong, P. Y. K. Cheung, and N. P. Sedcole, “Combating
process variation on FPGAs with a precise at-speed delay
measurement method,” in International Conference on Field
Programmable Logic and Applications, 2008, pp. 703–704.

[13] J. S. J. Wong, P. Sedcole, and P. Y. K. Cheung, “A transition
probability based delay measurement method for arbitrary
circuits on FPGAs,” in International Conference on Field-
Programmable Technology, 2008.

[14] M. Brown, C. Bazeghi, M. Guthaus, and J. Renau, “Measur-
ing and modeling variabilityusing low-cost FPGAs,” in In-
ternational Symposium on Field-Programmable Gate Arrays,
2009, pp. 286–286.

[15] M. Orshansky, S. R. Nassif, and D. Boning, Design for Manu-
facturability and Statistical Design: A Constructive Approach.
Springer, 2007.

[16] A. Srivastava, D. Sylvester, and D. Blaauw, Statistical Analy-
sis and Optimization for VLSI:Timing and Power. Springer,
2005.

[17] F. Liu, “A general framework for spatial correlation modeling
in VLSI design,” in DAC, 2007, pp. 817–822.

[18] E. Candes, J. Romberg, and T. Tao, “Robust uncertainty prin-
ciples: Exact signal reconstruction from highly incomplete
frequency information,” IEEE Transaction on Information
Theory, 2006.

[19] C. Hegde, M. B. Wakin, and R. G. Baraniuk, “Random
projections for manifold learning - proofs and analysis,” in
Neural Information Processing Systems, 2007.

[20] E. Candes and B. Recht, “Exact matrix completion via convex
optimization,” Foundations of Computational Mathematics,
no. 9, pp. 717–772, 2008.

[21] M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Techniques
for design and implementation of secure reconfigurable
PUFs,” ACM Transactions on Reconfigurable Technology and
Systems, vol. 2, no. 1, pp. 1–33, 2009.

[22] “Virtex-5 FPGA data sheet, product specification,” Xil-
inx Inc., Tech. Rep., 2009.

[23] M. Grant and S. Boyd., CVX: Matlab software for
disciplined convex programming, 2009. [Online]. Available:
http://stanford.edu/ boyd/cvx

