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ABSTRACT

We propose a new optimization paradigm for solving intractable
combinatoria problems. The technique, named probabilistic constructive,
combines the advantages of both congtructive and probabilistic agorithms.
The congtructive aspect provides relatively short runtime and makes the
technique amenable for the inclusion of insights through heuristic rules. The
probahilistic nature facilitates a flexible trade-off between runtime and the
quaity of solution.

In addition to presenting the generic technique, we apply it to the
Maxima Independent Set problem. Extensive experimentation indicates
that the new approach provides very attractive trade-offs between the quaity
of the solution and runtime, often outperforming the best previoudy
published approaches.

1. Introduction

In order to build high quaity CAD software, a number of components
need to be in place. These components include proper abstractions of
synthesis problems that capture important features and diminate non-
important ones, and models that characterize design components such as
delay, area, and early power prediction. Any developed software must be
modular and written in such away that it can be easily reused and modified.
Furthermore, there is a strong demand for user interfaces that smplify the
designer’s interaction with CAD tools during the design process. While the
list of desired CAD software componentsislong, at the heart of dl synthesis
software are optimization agorithms for solving computationally intractable
problems.

It is interesting and enlightening to classify the developed dgorithms.
Figure 1 showsthe classification according to two main criteria: (i) theway in
which the solution is built and (i) the presence or absence of randomness.
More specificaly, al agorithms can be classified as ether deterministic or
probabilisticin onedimension, and asconstructive or iterativeimprovement in
the second dimension. The largest group of agorithms are constructive
deterministic. For example, many CAD agorithms are based on the forced
directed paradigm or use dynamic programming. In the last three decades,
determinigtic iterative improvement agorithms[15] were proposed for many
problems and they were able to produce the best results. In particular,
determinigtic iterativeimprovement a gorithmsarewidely and frequently used
for partitioning [2]. Since the mid-80's, when simulated annealing was first
proposed for usein designing multi-chip computers[16], probabilisticiterative
improvement has attracted agreat ded of atention for solving CAD problems.
Techniques such as Genetic Algorithms, Tabu Search, and Smulated
Evolution, dueto their programming smplicity and flexibility, have been used
for avariety of synthesis tasks. Their main disadvantage however, is usualy
long runtime.

While numerous agorithms populate three of the quadrants in Figure
1, the probabilistic congtructive quadrant is empty. The closest in spirit to
this quadrant are randomized deterministic dgorithms [19]. Our god in this
paper is to push the envelope well beyond this type of randomization and
develop agorithms that are smultaneously constructive and probahilistic,
by leveraging on the positive properties of both constructive agorithms and
probahilistic algorithms. The main advantage of congtructive agorithms is

their relatively short runtime and flexibility to incorporate a variety of
insights as efficient heuristics. On the other hand, the main advantage of
probahilistic dgorithms is their inherent flexibility that facilitates the trade-
off between qudlity of solution and runtime.

The new approach can best be explained a the intuitive leve in the
following way: We gart by searching for a smdl part of the solution that
can be solved effectively, in such away that the remainder of the problem is
dso suitable for similar optimization. For this search, we propose a
probabilistic methodology, where parts of the solution are considered, and
the decision of which to sdlect is made in a probabilistic manner so that the
likelihood of obtaining a high quality solution is maximized. The quality of
the solution is evauated using an objective function. After the small part is
solved, we eiminate it from further consideration and solve the remaining
problem iterativdly using the same approach. The find sage is to
incorporate the solutions to each of the small parts together to form the fina
solution to the problem.
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Figure1 - Classfication of Optimization Algorithms
2. Reated Work

By far the most popular and widely used generic algorithmic paradigm
is the deterministic constructive approach. Algorithms of this type have
been applied on a vast variety of problems, starting from sorting and basic
graph dgorithms such as Breadth First Search and Topological Sort, to
more complex graph agorithms, such as All-Pairs Shortest Path and
Maximum Flow. Severa generic agorithmic techniques of the constructive
deterministic gpproach have found many applications. For example, Greedy
Algorithms, Dynamic Programming, and Branch-and-Bound are used to
solve for many different problems.

In 1970, Kernighan and Lin introduced the first iterative improvement
heurigtics, which was applied for graph partitioning [15]. The agorithm
USES pair swap moves to iteratively reassign eements to different partitions.
It proceeds in a series of passes, during which each component is moved
exactly once. A number of improvements on the basic strategies have been
proposed over the years[10]. An excellent survey of thisresearchisgivenin
[2]. The iterative improvement paradigm has been applied to many other
optimization problems, including the traveling salesman problem [Lin73].

Randomized versions of the deterministic constructive agorithms have
been popular for a long time [19]. Randomization often dramaticaly



improves the average runtime of agorithms. There are two types of
randomized dgorithms, Las Vegas and Monte Carlo. The Las Vegas
agorithm aways generates a correct solution, but their runtime varies
depending on the distribution of inputs. In contrast, Mote Carlo agorithms
may sometimes produce an incorrect solution, but they run in a predictable
amount of time. The probability of the Monte Carlo agorithm producing an
incorrect solution can be made arbitrarily smal by repetitively running the
agorithm, each with independent random choices.

Since 1953, a number of probabilistic iterative improvement
agorithms have been proposed. Two of them have origins in dtatisticd
mechanics. the Metropolis agorithm [19] and Smulated Annealing [16].
Smulated Annealing found a spectrum of gpplication in engineering,
computer science and image recognition [1]. In contrast to deterministic
iterative improvement agorithms, Smulated Annealing dlows hill-climbing
moves. Consequently, a number of probabilistic iterative improvement
agorithms that often explore with andogy to physica and biologica world
have been proposed including Genetic Algorithms [13,20], Neural Networks
[14], Smulated Evolution [7,12], and Tabu Search [8,11].

The new probabilistic congtructive paradigm is different from al the
above paradigms. In some sense it is closest to randomized agorithms.
Conceptudly, the differenceis that probabilistic constructive uses extensive
probabilistic search to find an atractive way to solve an arbitrary small part of
the problem and construct (as opposite to improve) solution.

3. Generic Probabilistic Constructive Approach

The basic idea behind the probabilistic constructive approach is to
search, probabiligticaly, for asmal part of the solution which can be solved
well and which leaves the remaining problem amenable for further
optimization. For example, when we are searching for a graph coloring
solution, we can color a few nodes in a particular way and remove them
from further consideration.

The generic approach has the following ten components:

Candidate Part (CP): The candidate part is arelatively smdl portion of the
problem that can be efficiently solved in a particular way. In the generd
case, we must make two choices regarding the CP: (i) which components of
the problem to consider and (i) how to resolve that part of the problem. Itis
important that the CP is not too smdl in order to avoid overly loca and
greedy solutions. It is aso important that the CP is not too large in order to
avoid long search times. For example, in Graph Coloring, coloring asingle
node at a time is a CP decision that is too local. However, it is difficult to
find a promising coloring solution if we decide to color too many nodes
simultaneoudly.

Probabilistic Search (PS): One of the more important aspects of the
agorithm is how to efficiently search the solution space using probabilistic
congtructs. There are two main dternatives. One is to define a move that
probabiligticaly replaces a single component from the CP with the new
component. The second method is to generate a new CP from scratch. The
first technique is faster while the second is capable of quickly scanning the
complete solution space. From the implementation point of view, random
number generation is a computationally intensive task in the probahilistic
congructive dgorithm. In our implementation, we use a stored list of
randomly generated numbers tha is traversed sarting from randomly
sdected points.  While this approach generates numbers that are not
completely compliant with the standard test for randomness, the extensive
implementation implies that it can speed up the peformance of the
agorithm by an order of magnitude without sacrificing the qudity of
solution.

Candidate List (CL): The candidate list contains the k best solutionsfor the
CPs found using probabilistic search. The most important criteriarelated to
the CLs are the ones that select which solutions should be included in the
list. The smplest approach isto include only the k best solutions (with k best
OFs). A more sophidticated approach takes into account the overlap
between the new proposed solution and solutionsin the candidate list.
Objective Function (OF): The objective function is a heuristic measure of
likelihood that a particular solution to a particular part of the final solutionis

a promising choice. The main trade-off here is between the accuracy
(ability to estimate) and the runtime.

Comprehensive Objective Function (COF): The objective function is
caculated for al proposed solutions and thereforeit isimportant that the OF
is fast. Once the number of candidates is reduced to only a few, it is
essentia to evauate them as accurately as possible. Therefore, before the
final sdlection of a particular candidate from the CL, we caculate the COF.
The main difference between OF and COF is that the former involves
caculations of properties related only to properties of a smal part of the
solution, while the latter takes into account properties of the still remaining
unsolved regions.  Another important criterion that needs to be taken into
consideration is the overlap between the sdlected CP and other candidates
from CL. Clearly, less overlap implies that more of the current candidates
can be reused in the next stages of the agorithm.

Stopping Criteria: The effectiveness of probabilistic search for apromising
CP is positively correlated with the search time. Nevertheless, two genera
guidance criteria can be dated: (i) longer search time is required in the
beginning when the problem is il large, (i) the best indication of finding a
new quaity solution for a CP isthat for along period of timeno new CPis
observed.

Best Candidate Sdlection: The best candidate selection is the process of
selecting the part of the solution that will be accepted. The Smplest strategy
is to sdect the one with the best COF. One can envison a multitude of
dternatives where information from the previous runs of the agorithm is
considered or delayed decision is used.

Solution Integration: Divide and conquer is a popular agorithmic
paradigm. Its application is often restricted due to the difficulty of
integrating components. Therefore, one of the most important aspects of the
probabilistic constructive gpproach is to develop mechanisms for integrating
solutions to the small parts into the solution of the overdl problem. In a
sensg, thisisthe most demanding aspect of the CP approach, which requires
the highest degree of credtivity. Nevertheless, there exists a generic
technique for this task. The technique is based on constraint manipulation,
where the dready solved parts, are presented as congtraints to the remaining
problem. A small example will better explain this paradigm. Consider the
graph-coloring problem. If we decide to color two nodes n; and n, with the
same color as a CP, dl that is needed is to replace these n; and n, with a
single node n' in the remainder of the problem. Note that n’ should have
edgesto dl the nodes that were connected to n; and n,.

Overall Control Strategy: Since the new approach is probabilistic, each
run of the algorithm, in principle, produces different solutions and has
different runtimes. One can super-impose a variety of control strategies
using the generic algorithm as the building block. For example, one can
use multi-starts or keep statistics about the difficulty of resolving some
parts of the solution and use this as the decision criteria of when to
terminate an unpromising start.

The new problem-solving paradigm can be explained in the following
way: weattempt to find asmall and readily solvable part of an overall problem
and find ahigh quality solution to that part. The objective function is used to
evaluate the qudity of the proposed solution. Examining al parts of the
problem is a procedure with exponential time complexity and therefore is
not a plausible approach. This suggests the use of a randomized search
agorithm. The search should avoid visiting the same parts of the problem
more than once. The parts with a high solution quaity are stored for future
condderations. In particular, diverse solutions are very beneficia because
they can be used consequently to form other parts of the solution.
Furthermore, if possible, the CP should be flexible in order to alow the
imposing of additiona control or search Strategies later on. The pseudo code
of ageneric gpproach for the probabilistic constructive procedure (GPC) is
listed in Figure 2.

First, the agorithm builds a CL of promising solvable CPs (CP,). The
promising candidate is found after applying the probabilistic search to the
current instance of the problem, P. During this probabilistic sdlection, the
agorithm favors CPs that are more likely to be solved efficiently (have
higher OF values), and adds only the best CPs to the CL. Next, the



comprehensive objective function, COF, is caculated for each of the
elements in CL. The BCS is sdected from the CL according to the
corresponding rule. This sdected BCS or CP, which evauated best
according to the BCS rules, is then integrated as part of the solution and
eliminated from the problem. The procedure then repests on the remainder
of the problem until a complete solution isfound.

while ( Overall Controll Srategy is not satisfied)
Procedure GPC(P)
S/,
while (S(P) is not complete)
while (stopping criteria is not satisfied)
CP, = GenerateCP(); /lusing PS
if(OF; >OF i) /IOF i is CPwith smalest OF in CL
UpdateCL(CP));
for(all CPjinCL)
CalculateCOF(CP));
BCS= BestCandidateSdection(CL);
SP) = Solutionintegration(§P),BCS);

Figure2 - Generic Probabilistic Congtructive Algorithm

4. Application To Maximal Independent Set

Wefirst explain how the new constructive probabilistic paradigm can be
applied to the Maximal Independent Set problem.

Problem: Maximal I ndependent Set

Instance: Graph G=(V,E), positiveinteger K £ |V].

Question: Does G contain an independent set V', with cardinality greater
than or equal to the cardinality of all other independent sets of G, i.e. a
subset V'i V such that for all pairs of verticesuM V' theedge {uW}i E.

Given an undirected graph G=(V,E) where V isthe set of verticesand E
isthe set of edgesin G, an independent set is defined as asubset V' V such
that for al pairsof verticesuM V' theedge{u}1 E. Anindependent set V' is
aMaximal Independent Set, if " Vi V, e@ithervi V' or thereisaul V' suchthet
theedge{u,}1 E. Anindependent set V' isamaximum independent set, if V|
isgrester than or equd to the cardindity of al other independent setsof G. Itis
widely known that the independent set problem is directly related to severa
other key graph theory problems such as Vertex Cover and Clique[9).

The probabilistic constructive agorithm can be applied to the Maximal
Independent Set problem in at least two different ways. Thefirst isto select
nodes to include in the MIS. The other way is to sdlect nodes thet are to be
excluded from the MIS. In this case, the solution is the nodes that remain
unconnected in thefina graph.

For thefirst approach, selecting nodes to include in the MIS, we define
the componentsin the following way.

Candidate Part (CP): We sdect any subset of nodes where there are no
edges between them to be considered as the CP. Each CP is a possible
subset of the nodes in the final solution, or MIS. The candidate part can be
of sze k, where k is a variable or constant vaue. In our experimenta
evauations, we used k = 4 nodes. There are severd good heuristics for
sdlecting k. For example, k can be a fraction of the number of nodesin the
graph.

Probabilistic Search: We search the solution space by excluding one node
from a CP of size k, and including another node. The nodes to exclude, N,
and include, N, in the CP are chosen according to the following equations
calculated for each node:

#_neib
Ne=win + won, + weny where g = g N(i)
i=1

We define n as the number of neighbors of the node, and n, as the number of
unique neighbors, i.e. neighbors that no other node in the CP have edgesto.

The variable n; is the total number of neighbors for dl the neighbors of the
current node. We sdlect probabilistically which node to exclude or include
according to the nodes N, or N, vaue.

Candidate List (CL): Weinclude k; CPsin the CL with the constraint that
no node exists in more than 1/5 of the CPsin the CL. We dso state that if
the OFs of the CPs are rdaively consistent in value, then we continue to
add CPs to the CL to make it twice as long as usud. On the other hand, if
the vaues of the OF are didtributed, then we cease building the ligt,
assuming that we have satisfied the minimum list size, kyin. We reason that
if the values of the OF are rdlatively consistent, then most likely we should
continue to search further to find a good overdl sdlection. However, if the
vaues are wide spread, the CL has a good representation of the solution
space.

Objective Function (OF): The objective function is the weighted sum of n,
the number of nodes in the remainder of the graph that are ill digibleto be
included in the MIS, and eis the total number of edges minus the incident
edges. We give preference to the CPs that leave a large number of nodes
eligible for sdection in the next iteration. We aso give preference to the
CPsthat diminate many edges for the graph. Theless edgesin the graph the
more likely we are to be able to sdlect more nodes to eventudly include in
the MIS.

OF(CP)=a,n +a.,e

Comprehensive Objective Function (COF): For the COF we combine the
OF with an additiona component. This component pendizes a CP for
having alarge number of neighbors outside the CP. We denote the number
of neighbors of nodei in the CP by n,. We denote the size of the CP by k.

k

COF(CP) =OF(mS) +a, & N

i=1
We pendize CPs with a higher number of neighbors outside of the CP
because they limit the number of possible nodes for the next iteration. Note
that in this case az is negative.
Stopping Criteria: We stop searching for new CPs for the CLs after kn,
attempts to find a CP with an improved OF, where n; is the number of
remaining nodes in the graph. Theideaisthat if the recent searching efforts
do not provide any improvement then most likely none will be found. We
found that k = 5 performswell in practice.
Best Candidate Selection: We sdlect the best CP by enhancing the COF
with additiona criteria - the number of occurrences of the CP nodesin the
CL. If the nodes in the BCS only appear in one CP in the CL, then by
sdlecting the CP we presarve alarge number of dready found CPsinthe CL
and leave a large part of the solution space with high potential untouched.

We denote the total number of appearancesfor nodei inthe CPas & .
1
BcgcP) = W,COF (CR) +—
g

Solution Integration: We integrate the BCSinto the solution and leave the
remaining problem to be solved by removing dl nodes in the sdected CP,
aswell as neighbors of the nodes and all incident edges.

Overall Control Strategy: For the overal control strategy we conduct /10
multi-starts given that nisthe number of nodesin the origind instance. This
number was found experimentally.

The second gpproach, where we sdlect nodes to exclude from the MIS,
uses many of the same component definitions as the first gpproach. The
definitions of the CP, CL, COF, Sopping Criteria, BCS Solution
Integration and Overall Control Srategy al stay the same. We define the
remaining components in the following way.

Probabilistic Search: We select any one of the nodes to be excluded from
the CP and replaced with another node. The nodes to be included and
excluded are selected probabilistically using the following values.
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N; =1 |nijk|

We define the neighbor of node n; as ny, and the neighbor of n; as Ny

Therefore we eliminate the nodes with many 2™ neighbors, becauise these

neighbors will greatlly harm a potentid solution by €iminating a

consderable amount of nodes from consideration.

Objective Function (OF): In this case we simplify the objective function to

only include the number of edges which remain in the resulting graph, e.
OF(CP)=ae

5. Experimental Results

In this section we present the experimenta results conducted on redl-
life examples. We applied the congtructive probabilistic technique and
compared the results to previoudy published results [5]. All testing was
done on a300-MHz Sun Ultra-10 Workstation.

Name Vv C'ﬁ(;ﬂe ,'\EM"; g CPU
chool 1_nsh 358 | 16710 | 47193 | 14 | 022
Kellerd 171 | 9435 | 5100 | 11 09
sanr200_0.7 200 | 13868 | 6032 | 18 | 371
brock200_1 200 | 14834 | 5066 | 21 | 2258
5n200 0.7 2 200 | 13930 | 5970 | 18 | 031
P_hat300-2 300 | 21928 | 202 | 25 | 094
Hamming8-4 256 | 20864 | 11776 | 16 | 0.006
5n200 0.9 1 200 | 17910 | 1990 | 70 | 102
MANN_a27 378 | 70851 | 702 | 126 | 123

Table 1 - Experimental Resultsfor Independent Sets

We ran testing on instances for the problem of finding the maximum
clique. The maximum clique problem can be easily mapped to MIS by
complementing the graph. Complemented graph G, of graph G isagraph
that has the same set of vertices as G. However, G, has edges between two
verticesif and only if G does not have edge between these two vertices. The
MISin agraph is the maximum clique in the complemented graph and vise
versa.

Thefirst column of Table 1 indicates the name of the maximum clique
instance (the instances are from [4,6]) while the second column states the
number of vertices in the graph. The next two columns give the number of
edges in the origina graph and the number of edges in the complemented
graph respectively. The fifth column represents the number of nodes in the
MIS or maximum clique. In dl cases, the probabilistic congructive
gpproach was able to find the optima solution. Findly, the sixth column
displays the runtime for finding the MIS using the constructive probabilistic
heurigtic. The reported times are faster than any other previoudly published
time[5].

6. Conclusion

We introduced a new probabilistic constructive agorithm paradigm.
The method combines the reativly short runtime of constructive
agorithms and the flexibility of probabilistic agorithms. We discussed the
main components of the new approach. We applied the agorithm to the
problem of Maxima Independent Set. In [21], the constructive probabilistic
gpproach is applied to graph coloring and two design problems (code
covering and scheduling). Extensive experimentation indicates that the new
agorithm is capable of achieving competitive or better results than
previoudly published approaches, often with shorter runtimes.
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