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ABSTRACT 
We propose a new optimization paradigm for solving intractable 

combinatorial problems. The technique, named probabilistic constructive, 
combines the advantages of both constructive and probabilistic algorithms. 
The constructive aspect provides relatively short runtime and makes the 
technique amenable for the inclusion of insights through heuristic rules. The 
probabilistic nature facilitates a flexible trade-off between runtime and the 
quality of solution. 

In addition to presenting the generic technique, we apply it to the 
Maximal Independent Set problem. Extensive experimentation indicates 
that the new approach provides very attractive trade-offs between the quality 
of the solution and runtime, often outperforming the best previously 
published approaches.  

1. Introduction 
In order to build high quality CAD software, a number of components 

need to be in place. These components include proper abstractions of 
synthesis problems that capture important features and eliminate non-
important ones, and models that characterize design components such as 
delay, area, and early power prediction. Any developed software must be 
modular and written in such a way that it can be easily reused and modified. 
Furthermore, there is a strong demand for user interfaces that simplify the 
designer’s interaction with CAD tools during the design process. While the 
list of desired CAD software components is long, at the heart of all synthesis 
software are optimization algorithms for solving computationally intractable 
problems.  

It is interesting and enlightening to classify the developed algorithms. 
Figure 1 shows the classification according to two main criteria: (i) the way in 
which the solution is built and (ii) the presence or absence of randomness. 
More specifically, all algorithms can be classified as either deterministic or 
probabilistic in one dimension, and as constructive or iterative improvement in 
the second dimension. The largest group of algorithms are constructive 
deterministic. For example, many CAD algorithms are based on the forced 
directed paradigm or use dynamic programming. In the last three decades, 
deterministic iterative improvement algorithms [15] were proposed for many 
problems and they were able to produce the best results. In particular, 
deterministic iterative improvement algorithms are widely and frequently used 
for partitioning [2]. Since the mid-80’s, when simulated annealing was first 
proposed for use in designing multi-chip computers [16], probabilistic iterative 
improvement has attracted a great deal of attention for solving CAD problems. 
Techniques such as Genetic Algorithms, Tabu Search, and Simulated 
Evolution, due to their programming simplicity and flexibility, have been used 
for a variety of synthesis tasks. Their main disadvantage however, is usually 
long runtime.  

While numerous algorithms populate three of the quadrants in Figure 
1, the probabilistic constructive quadrant is empty. The closest in spirit to 
this quadrant are randomized deterministic algorithms [19]. Our goal in this 
paper is to push the envelope well beyond this type of randomization and 
develop algorithms that are simultaneously constructive and probabilistic, 
by leveraging on the positive properties of both constructive algorithms and 
probabilistic algorithms. The main advantage of constructive algorithms is 

their relatively short runtime and flexibility to incorporate a variety of 
insights as efficient heuristics. On the other hand, the main advantage of 
probabilistic algorithms is their inherent flexibility that facilitates the trade-
off between quality of solution and runtime.  

The new approach can best be explained at the intuitive level in the 
following way: We start by searching for a small part of the solution that 
can be solved effectively, in such a way that the remainder of the problem is 
also suitable for similar optimization. For this search, we propose a 
probabilistic methodology, where parts of the solution are considered, and 
the decision of which to select is made in a probabilistic manner so that the 
likelihood of obtaining a high quality solution is maximized. The quality of 
the solution is evaluated using an objective function. After the small part is 
solved, we eliminate it from further consideration and solve the remaining 
problem iteratively using the same approach. The final stage is to 
incorporate the solutions to each of the small parts together to form the final 
solution to the problem. 

Figure 1 - Classification of Optimization Algorithms 

2. Related Work 
By far the most popular and widely used generic algorithmic paradigm 

is the deterministic constructive approach. Algorithms of this type have 
been applied on a vast variety of problems, starting from sorting and basic 
graph algorithms such as Breadth First Search and Topological Sort, to 
more complex graph algorithms, such as All-Pairs Shortest Path and 
Maximum Flow. Several generic algorithmic techniques of the constructive 
deterministic approach have found many applications. For example, Greedy 
Algorithms, Dynamic Programming, and Branch-and-Bound are used to 
solve for many different problems.  

In 1970, Kernighan and Lin introduced the first iterative improvement 
heuristics, which was applied for graph partitioning [15]. The algorithm 
uses pair swap moves to iteratively reassign elements to different partitions. 
It proceeds in a series of passes, during which each component is moved 
exactly once. A number of improvements on the basic strategies have been 
proposed over the years [10]. An excellent survey of this research is given in 
[2]. The iterative improvement paradigm has been applied to many other 
optimization problems, including the traveling salesman problem [Lin73].  

Randomized versions of the deterministic constructive algorithms have 
been popular for a long time [19]. Randomization often dramatically
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improves the average runtime of algorithms.  There are two types of 
randomized algorithms, Las Vegas and Monte Carlo. The Las Vegas 
algorithm always generates a correct solution, but their runtime varies 
depending on the distribution of inputs. In contrast, Mote Carlo algorithms 
may sometimes produce an incorrect solution, but they run in a predictable 
amount of time. The probability of the Monte Carlo algorithm producing an 
incorrect solution can be made arbitrarily small by repetitively running the 
algorithm, each with independent random choices.  

Since 1953, a number of probabilistic iterative improvement 
algorithms have been proposed. Two of them have origins in statistical 
mechanics: the Metropolis algorithm [19] and Simulated Annealing [16]. 
Simulated Annealing found a spectrum of application in engineering, 
computer science and image recognition [1]. In contrast to deterministic 
iterative improvement algorithms, Simulated Annealing allows hill-climbing 
moves. Consequently, a number of probabilistic iterative improvement 
algorithms that often explore with analogy to physical and biological world 
have been proposed including Genetic Algorithms [13,20], Neural Networks 
[14], Simulated Evolution [7,12], and Tabu Search [8,11]. 

The new probabilistic constructive paradigm is different from all the 
above paradigms. In some sense it is closest to randomized algorithms. 
Conceptually, the difference is that probabilistic constructive uses extensive 
probabilistic search to find an attractive way to solve an arbitrary small part of 
the problem and construct (as opposite to improve) solution. 

3. Generic Probabilistic Constructive Approach 
The basic idea behind the probabilistic constructive approach is to 

search, probabilistically, for a small part of the solution which can be solved 
well and which leaves the remaining problem amenable for further 
optimization. For example, when we are searching for a graph coloring 
solution, we can color a few nodes in a particular way and remove them 
from further consideration.   

The generic approach has the following ten components:   

Candidate Part (CP): The candidate part is a relatively small portion of the 
problem that can be efficiently solved in a particular way. In the general 
case, we must make two choices regarding the CP: (i) which components of 
the problem to consider and (ii) how to resolve that part of the problem. It is 
important that the CP is not too small in order to avoid overly local and 
greedy solutions. It is also important that the CP is not too large in order to 
avoid long search times. For example, in Graph Coloring, coloring a single 
node at a time is a CP decision that is too local. However, it is difficult to 
find a promising coloring solution if we decide to color too many nodes 
simultaneously.  
Probabilistic Search (PS): One of the more important aspects of the 
algorithm is how to efficiently search the solution space using probabilistic 
constructs. There are two main alternatives. One is to define a move that 
probabilistically replaces a single component from the CP with the new 
component. The second method is to generate a new CP from scratch. The 
first technique is faster while the second is capable of quickly scanning the 
complete solution space. From the implementation point of view, random 
number generation is a computationally intensive task in the probabilistic 
constructive algorithm. In our implementation, we use a stored list of 
randomly generated numbers that is traversed starting from randomly 
selected points.  While this approach generates numbers that are not 
completely compliant with the standard test for randomness, the extensive 
implementation implies that it can speed up the performance of the 
algorithm by an order of magnitude without sacrificing the quality of 
solution.   
Candidate List (CL): The candidate list contains the k best solutions for the 
CPs found using probabilistic search. The most important criteria related to 
the CLs are the ones that select which solutions should be included in the 
list. The simplest approach is to include only the k best solutions (with k best 
OFs). A more sophisticated approach takes into account the overlap 
between the new proposed solution and solutions in the candidate list.   
Objective Function (OF): The objective function is a heuristic measure of 
likelihood that a particular solution to a particular part of the final solution is 

a promising choice.  The main trade-off here is between the accuracy 
(ability to estimate) and the runtime.   
Comprehensive Objective Function (COF): The objective function is 
calculated for all proposed solutions and therefore it is important that the OF 
is fast.  Once the number of candidates is reduced to only a few, it is 
essential to evaluate them as accurately as possible. Therefore, before the 
final selection of a particular candidate from the CL, we calculate the COF.  
The main difference between OF and COF is that the former involves 
calculations of properties related only to properties of a small part of the 
solution, while the latter takes into account properties of the still remaining 
unsolved regions.  Another important criterion that needs to be taken into 
consideration is the overlap between the selected CP and other candidates 
from CL.  Clearly, less overlap implies that more of the current candidates 
can be reused in the next stages of the algorithm. 
Stopping Criteria:  The effectiveness of probabilistic search for a promising 
CP is positively correlated with the search time.  Nevertheless, two general 
guidance criteria can be stated: (i) longer search time is required in the 
beginning when the problem is still large, (ii) the best indication of finding a 
new quality solution for a CP is that for a long period of time no new CP is 
observed.    
Best Candidate Selection: The best candidate selection is the process of 
selecting the part of the solution that will be accepted.  The simplest strategy 
is to select the one with the best COF.  One can envision a multitude of 
alternatives where information from the previous runs of the algorithm is 
considered or delayed decision is used.  
Solution Integration: Divide and conquer is a popular algorithmic 
paradigm. Its application is often restricted due to the difficulty of 
integrating components. Therefore, one of the most important aspects of the 
probabilistic constructive approach is to develop mechanisms for integrating 
solutions to the small parts into the solution of the overall problem. In a 
sense, this is the most demanding aspect of the CP approach, which requires 
the highest degree of creativity.  Nevertheless, there exists a generic 
technique for this task. The technique is based on constraint manipulation, 
where the already solved parts, are presented as constraints to the remaining 
problem. A small example will better explain this paradigm. Consider the 
graph-coloring problem. If we decide to color two nodes n1 and n2 with the 
same color as a CP, all that is needed is to replace these n1 and n2 with a 
single node n’ in the remainder of the problem. Note that n’ should have 
edges to all the nodes that were connected to n1 and n2. 
Overall Control Strategy: Since the new approach is probabilistic, each 
run of the algorithm, in principle, produces different solutions and has 
different runtimes. One can super-impose a variety of control strategies 
using the generic algorithm as the building block. For example, one can 
use multi-starts or keep statistics about the difficulty of resolving some 
parts of the solution and use this as the decision criteria of when to 
terminate an unpromising start. 

The new problem-solving paradigm can be explained in the following 
way: we attempt to find a small and readily solvable part of an overall problem 
and find a high quality solution to that part. The objective function is used to 
evaluate the quality of the proposed solution. Examining all parts of the 
problem is a procedure with exponential time complexity and therefore is 
not a plausible approach. This suggests the use of a randomized search 
algorithm.  The search should avoid visiting the same parts of the problem 
more than once. The parts with a high solution quality are stored for future 
considerations. In particular, diverse solutions are very beneficial because 
they can be used consequently to form other parts of the solution. 
Furthermore, if possible, the CP should be flexible in order to allow the 
imposing of additional control or search strategies later on. The pseudo code 
of a generic approach for the probabilistic constructive procedure  (GPC) is 
listed in Figure 2.  

First, the algorithm builds a CL of promising solvable CPs (CPi). The 
promising candidate is found after applying the probabilistic search to the 
current instance of the problem, P. During this probabilistic selection, the 
algorithm favors CPs that are more likely to be solved efficiently (have 
higher OF values), and adds only the best CPs to the CL.  Next, the 



comprehensive objective function, COF, is calculated for each of the 
elements in CL. The BCS is selected from the CL according to the 
corresponding rule. This selected BCS, or CPi which evaluated best 
according to the BCS rules, is then integrated as part of the solution and 
eliminated from the problem. The procedure then repeats on the remainder 
of the problem until a complete solution is found.  

while ( Overall Controll Strategy is not satisfied)       
 Procedure GPC(P)  
    S=∅ ; 
 while (S(P) is not complete)  
   while (stopping criteria is not satisfied)  
     CPi = GenerateCP(); //using PS 
    OFi = CalculateOF(CPi); 
    if(OFi >OFmin)    //OFmin is CP with smallest OF in CL 
     UpdateCL(CPi); 
   for(all CPj in CL) 
    CalculateCOF(CPj); 
   BCS = BestCandidateSelection(CL); 
   S(P) = SolutionIntegration(S(P),BCS);   

Figure 2 - Generic Probabilistic Constructive Algorithm  

4. Application To Maximal Independent Set 
We first explain how the new constructive probabilistic paradigm can be 

applied to the Maximal Independent Set problem.  

Problem: Maximal Independent Set 
Instance: Graph G=(V,E), positive integer K ≤ |V|. 
Question: Does G contain an independent set V’, with cardinality greater 
than or equal to the cardinality of all other independent sets of G, i.e. a 
subset V’⊆V such that for all pairs of vertices u,v∈V’ the edge {u,v}∉E. 

Given an undirected graph G=(V,E) where V is the set of vertices and E 
is the set of edges in G, an independent set is defined as a subset V’⊆V such 
that for all pairs of vertices u,v∈V’ the edge {u,v}∉E. An independent set V’ is 
a Maximal Independent Set, if ∀ v∈V, either v∈V’ or there is a u∈V’ such that 
the edge {u,v}∈E. An independent set V’ is a maximum independent set, if |V’| 
is greater than or equal to the cardinality of all other independent sets of G. It is 
widely known that the independent set problem is directly related to several 
other key graph theory problems such as Vertex Cover and Clique [9].   

The probabilistic constructive algorithm can be applied to the Maximal 
Independent Set problem in at least two different ways. The first is to select 
nodes to include in the MIS. The other way is to select nodes that are to be 
excluded from the MIS. In this case, the solution is the nodes that remain 
unconnected in the final graph. 

For the first approach, selecting nodes to include in the MIS, we define 
the components in the following way. 
Candidate Part (CP): We select any subset of nodes where there are no 
edges between them to be considered as the CP. Each CP is a possible 
subset of the nodes in the final solution, or MIS. The candidate part can be 
of size k, where k is a variable or constant value. In our experimental 
evaluations, we used k = 4 nodes. There are several good heuristics for 
selecting k. For example, k can be a fraction of the number of nodes in the 
graph. 
Probabilistic Search:  We search the solution space by excluding one node 
from a CP of size k, and including another node. The nodes to exclude, Ne, 
and include, Ni, in the CP are chosen according to the following equations 
calculated for each node: 

Ne = w1n + w2nu + w3n1   where  n1 = ∑
=

neib
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We define n as the number of neighbors of the node, and nu as the number of 
unique neighbors, i.e. neighbors that no other node in the CP have edges to. 

The variable n1 is the total number of neighbors for all the neighbors of the 
current node. We select probabilistically which node to exclude or include 
according to the nodes Ne or Ni value. 
Candidate List (CL):  We include k1 CPs in the CL with the constraint that 
no node exists in more than 1/5 of the CPs in the CL. We also state that if 
the OFs of the CPs are relatively consistent in value, then we continue to 
add CPs to the CL to make it twice as long as usual. On the other hand, if 
the values of the OF are distributed, then we cease building the list, 
assuming that we have satisfied the minimum list size, kmin. We reason that 
if the values of the OF are relatively consistent, then most likely we should 
continue to search further to find a good overall selection. However, if the 
values are wide spread, the CL has a good representation of the solution 
space.  
Objective Function (OF): The objective function is the weighted sum of nr, 
the number of nodes in the remainder of the graph that are still eligible to be 
included in the MIS, and e is the total number of edges minus the incident 
edges. We give preference to the CPs that leave a large number of nodes 
eligible for selection in the next iteration. We also give preference to the 
CPs that eliminate many edges for the graph. The less edges in the graph the 
more likely we are to be able to select more nodes to eventually include in 
the MIS. 

OF(CPi) = enr 21 αα +  

Comprehensive Objective Function (COF): For the COF we combine the 
OF with an additional component. This component penalizes a CP for 
having a large number of neighbors outside the CP. We denote the number 
of neighbors of node i in the CP by ni. We denote the size of the CP by k. 

COF(CPi)  = OF(mISi) + ∑
=

k

i
in

1

2
3α  

We penalize CPs with a higher number of neighbors outside of the CP 
because they limit the number of possible nodes for the next iteration. Note 
that in this case α3 is negative. 
Stopping Criteria: We stop searching for new CPs for the CLs after knr 

attempts to find a CP with an improved OF, where nr is the number of 
remaining nodes in the graph. The idea is that if the recent searching efforts 
do not provide any improvement then most likely none will be found. We 
found that k = 5 performs well in practice. 
Best Candidate Selection: We select the best CP by enhancing the COF 
with additional criteria - the number of occurrences of the CP nodes in the 
CL. If the nodes in the BCS only appear in one CP in the CL, then by 
selecting the CP we preserve a large number of already found CPs in the CL 
and leave a large part of the solution space with high potential untouched. 

We denote the total number of appearances for node i in the CP as ia . 

BCS(CPi) = 
i

i a
CPCOFw

1
)(1 +  

Solution Integration: We integrate the BCS into the solution and leave the 
remaining problem to be solved by removing all nodes in the selected CP, 
as well as neighbors of the nodes and all incident edges. 
Overall Control Strategy: For the overall control strategy we conduct n/10 
multi-starts given that n is the number of nodes in the original instance. This 
number was found experimentally. 

The second approach, where we select nodes to exclude from the MIS, 
uses many of the same component definitions as the first approach. The 
definitions of the CP, CL, COF, Stopping Criteria, BCS, Solution 
Integration and Overall Control Strategy all stay the same. We define the 
remaining components in the following way. 

Probabilistic Search: We select any one of the nodes to be excluded from 
the CP and replaced with another node. The nodes to be included and 
excluded are selected probabilistically using the following values. 
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We define the neighbor of node ni as nij, and the neighbor of nij as  nijk. 
Therefore we eliminate the nodes with many 2nd neighbors, because these 
neighbors will greatly harm a potential solution by eliminating a 
considerable amount of nodes from consideration.  
Objective Function (OF): In this case we simplify the objective function to 
only include the number of edges which remain in the resulting graph, e. 

OF(CPi) = eα  

5. Experimental Results 
In this section we present the experimental results conducted on real-

life examples. We applied the constructive probabilistic technique and 
compared the results to previously published results [5]. All testing was 
done on a 300-MHz Sun Ultra-10 Workstation. 
 

Name V 
E in 

Clique 
E in 
MIS γγ  CPU 

school1_nsh 358 16710 47193 14 0.22 

Keller4 171 9435 5100 11 0.9 

sanr200_0.7 200 13868 6032 18 3.71 

brock200_1 200 14834 5066 21 22.58 

san200_0.7_2 200 13930 5970 18 0.31 

P_hat300-2 300 21928 22922 25 0.94 

Hamming8-4 256 20864 11776 16 0.006 

san200_0.9_1 200 17910 1990 70 1.02 

MANN_a27 378 70551 702 126 12.3 

Table 1 - Experimental Results for Independent Sets 

We ran testing on instances for the problem of finding the maximum 
clique. The maximum clique problem can be easily mapped to MIS by 
complementing the graph. Complemented graph Gc of graph G is a graph 
that has the same set of vertices as G. However, Gc has edges between two 
vertices if and only if G does not have edge between these two vertices. The 
MIS in a graph is the maximum clique in the complemented graph and vise 
versa.  

The first column of Table 1 indicates the name of the maximum clique 
instance (the instances are from [4,6]) while the second column states the 
number of vertices in the graph. The next two columns give the number of 
edges in the original graph and the number of edges in the complemented 
graph respectively. The fifth column represents the number of nodes in the 
MIS or maximum clique. In all cases, the probabilistic constructive 
approach was able to find the optimal solution. Finally, the sixth column 
displays the runtime for finding the MIS using the constructive probabilistic 
heuristic. The reported times are faster than any other previously published 
time [5]. 

6. Conclusion 
We introduced a new probabilistic constructive algorithm paradigm.  

The method combines the relatively short runtime of constructive 
algorithms and the flexibility of probabilistic algorithms. We discussed the 
main components of the new approach.  We applied the algorithm to the 
problem of Maximal Independent Set. In [21], the constructive probabilistic 
approach is applied to graph coloring and two design problems (code 
covering and scheduling). Extensive experimentation indicates that the new 
algorithm is capable of achieving competitive or better results than 
previously published approaches, often with shorter runtimes.  
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