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ABSTRACT
We introduce a new methodology for noninvasive post-silicon
characterization of the unique static power profile (tomo-
gram) of each manufactured chip. The total chip leakage is
measured for multiple input vectors in a linear optimization
framework where the unknowns are the gate leakage varia-
tions. We propose compressive sensing for fast extraction
of the unknowns since the leakage tomogram contains cor-
relations and can be sparsely represented. A key advantage
of our approach is that it provides leakage variation esti-
mates even for inaccessible gates. Experiments show that
the methodology enables fast and accurate noninvasive ex-
traction of leakage power characteristics.

Categories and Subject Descriptors
B.7.3 [Integrated Circuits]: Reliability and Testing; B.1.3
[Hardware]: Control Structure Reliability, Testing, and
Fault-Tolerance; B.8.2 [Performance and Reliability]:
Performance Analysis and Design Aids

General Terms
Performance, Measurement, Verification

Keywords
Post-silicon Characterization, Process Variations, Leakage
Current

1. INTRODUCTION
The aggressive scaling of CMOS feature sizes is a result

of the growing demand for lowering the cost-per-function by
increasing the device density and computational speed. Be-
cause of the random inaccuracy in manufacturing at small
scales, variations in transistor feature sizes are inevitable.
As a result, VLSI circuits show highly variable power char-
acteristics. The power consumption of an integrated circuit
(IC) is not a deterministic function of the design anymore.
Each chip exhibits a specific profile for both static and dy-
namic power consumptions.
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Post-silicon power characterization of an IC is a challeng-
ing and important task. Tomography is the general term
used for imaging by sectioning. Power tomography refers
to the task of finding the image of a chip’s power varia-
tions in the 2D layout space. Characterizing a chip’s power
tomogram is the key enabler for a variety of applications,
described in Section 3, such as power simulations and hot
spot identification.

Modeling the statistical variations of device characteris-
tics is a subject of active research [1–3]. In sub-100nm
CMOS technology static power (leakage current) is a large
portion of the total power consumption [4]. For example,
cache leakage management leads to a 28% reduction in power
consumption [5]. Estimation of the process variation for a
manufactured IC is not easy. Although invasive methods
have been proposed [2,6], the research in finding the specific
power profile of each chip post-silicon has been limited. To
date there is no general method for noninvasive estimation
of the power variations across an IC.

In this paper, we use external leakage current measure-
ments and the new theory of compressive sensing to find
post-silicon tomogram of the static power profile of a manu-
factured chip. First, we apply a number of input vectors to
the chip and measure the corresponding total leakage cur-
rent. Next, we use the measurements and the combinational
logic relations of the IC in a linear optimization framework.
The unknown variables are the normalized leakage power
consumption of each gate. The optimization objective is to
decrease the discrepancy among the multiple measurements,
while the constraints are provided by the measurements rela-
tions. Our key insight is that because of the spatial correla-
tions in the gates’ leakage currents, the gate leakage current
vector can be sparsely represented [7, 8]. Thus, we propose
compressed sensing to recover the sparse representation of
the leakage variations in the wavelet domain using a small
number of power measurements. Evaluation results show
that by using the new method, the tomogram representing
the IC’s leakage power profile can be rapidly found with a
low estimation error. Our contributions are as follows:

(1) We propose a new linear optimization framework for
noninvasive extraction of the chip’s leakage power profile.

(2) We report the first ever use of the novel theory of com-
pressive sensing in characterizing the IC’s variations.

(3) For the first time, the sparsity of the process variations
is exploited for post-silicon characterization. Even though
spatial correlations in process variations have been widely
studied [2, 6, 9], using the sparsity resulting from the corre-
lations for post-silicon power tomography is new.



(4) We accommodate the non-regular gate placements by
modifying the original compressive sensing formulation.

(5) Using the method, we estimate leakage variations of the
gates that are inaccessible because of uncontrollability and
unobservability problems. The sparsity of the variations is
the key for estimating the inaccessible gates.

(6) We show how the characterization result is insensitive
to the choice of input vectors. This is because the com-
pressive sensing theory is able to find a solution for random
measurement inputs that are independent.

(7) We propose a number of new applications for noninvasive
post-silicon tomography of the leakage power.

The remainder of the paper is as follows. Related work,
applications and preliminaries are discussed in Section 2, 3
and 4, respectively. The framework for noninvasive chip to-
mography using leakage current measurements is presented
in Section 5. The compressive sensing formulation of the
problem is introduced in Section 6. Evaluation results are
shown in Section 7. We summarize the paper in Section 8.

2. RELATED WORK
Although pre-silicon models of the statistical process vari-

ations are widely available [3, 10–12], there is a lack of re-
search in post-silicon measurement and characterization. Doh
et al. fabricated a 4 × 5 module array in 130nm CMOS
technology to experimentally characterize spatial correlation
in the process variation [6]. Friedberg et al. used Electri-
cal Linewi- dth Metrology (ELM) to measure feature size
of all transistors on a 200 mm wafer [2]. They used the
Kelvin test to find linewidth by ELM measurements. They
also proposed a piecewise linear model for spatial correla-
tion function (correlogram). Zhao et al. used transistor
arrays to study the process variation [9] of a test chip de-
signed in [13]. The test structure was specifically designed
to study local variation in the transistors. They proposed a
method to model process variations and showed that know-
ing the statistical parameters of the variation can reduce the
IC power prediction error from 30% to 7%. Hargreaves et
al. [14] used separate measurements of ring oscillators’ fre-
quencies to measure variations of a test chip. The measured
variations were modeled as a Gaussian field. Their method
differs from the Gaussian model by Liu [10] in both the form
of the correlation function and the fitting procedure.

All the above post-silicon variation studies are invasive.
However, there is a need for noninvasive post-silicon charac-
terization methods. We introduce a non-invasive post-silicon
tomography that provides fast, inexpensive, and accurate es-
timate of each IC’s unique variations.

3. APPLICATIONS
The fast chip tomography method reveals the specific leak-

age characteristics of each IC using only a small number of
measurements. The method is inexpensive and enables in-
vestigation of a wide spectrum of important and challenging
new post-silicon applications, including:

(1) Leakage variation modeling and simulation. Statistical
modeling of chip variations has been an active area of re-
search [1,10,12]. Instead of using typical parametric models
such as the common assumption of multivariate normal dis-
tribution, researchers can use the post-silicon tomogram of
the manufactured ICs to form nonparametric models that

more accurately express the leakage variations. These mod-
els can also be integrated within power simulator tools for
accurate and realistic simulation models.

(2) Identifying the hot spots. Finding the tomogram of the
chip enables identification of those hot-spots that incur a
larger leakage power dissipation. Hot spots can be specifi-
cally controlled or cooled down to avoid possible damages.

(3) Post-silicon optimization. Knowing the variations in
an IC helps us to find the true power consumption of the
different parts of the IC. Thus, one can perform efficient
IC-specific power optimizations. For example, Alkabani et
al. [15] recently showed that IC-specific post-silicon input
vector control in average results in 10% more leakage power
reduction compared with pre-silicon input control in the
90nm technology.

(4) Fault detection. When a digital IC is designed and
manufactured, there is no guarantee that it has the same
functionality as it is designed; i.e., there might be some
faulty logic gates that affect the IC’s functionality. Thus,
the manufactured IC should be tested for faulty gates [16].
One can use the leakage power tomography results to detect
the faulty gates that represent abnormal characteristics.

(5) IC identification and fingerprinting. The leakage power
tomogram is specific to each chip and thus provides a unique
signature (fingerprint) for the pertinent IC. It is possible to
uniquely identify each chip using a small digital memory on
the chip. However, this identification method is subject to
cloning and removal attacks since the digitally stored con-
tent can be physically attacked, removed or copied. The
signature resulting from the chip’s static power tomogram
represents the analog leakage variations that cannot be eas-
ily controlled, modeled, or cloned [17].

4. PRELIMINARIES
This section introduces models for leakage current varia-

tion used in the paper and the theory of compressive sensing.
We also present the global flow of our approach.

4.1 Models for Leakage Current Variation
Process variation is generally categorized as intra-die and

inter-die. The inter-die variation represents the variation
among different dies in the same wafer. The intra-die vari-
ation refers to the variation among different devices on the
same chip. Since the inter-die variation in constant over a
specific chip, we focus on the inter-die variation.

In the remainder of this paper, we use the model for leak-
age variation introduced in [10], shown to agree with experi-
mental data. In this model the intra-die variation consists of
an uncorrelated random variable and a spatially correlated
random variable, both modeled as normally distributed.

Specifically, the Normal random variables describe varia-
tion of the gates’ dimensions. Because of the exponential
relation between the leakage current (static power) and the
device dimensions, the leakage current variation distribution
is approximately lognormal. Thus, power consumption ex-
hibits multiplicative variation, i.e., pu = φup0

u, where p0
u

and pu are nominal power and real power consumption of
the gate gu, respectively, and φu is the scaling factor.

4.2 Compressive Sensing
Compressive Sensing is a new signal processing field that

exploits sparsity to acquire high-dimensional signals using
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Figure 1: Global flow of the IC tomography. We can
use standard `2 norm optimization or compressive
sensing to estimate variations.

very few linear measurements [7,8,18]. Specifically, consider
a vector x in an N -dimensional space which is K-sparse,
i.e., has only K non-zero components. Using compressive
sensing, this vector can be sampled and reconstructed with
only M = O(K log(N/K)) linear measurements:

p = Ax + e, (1)

where A is a M × N measurement matrix, p are the mea-
surements and e is the measurement noise.

The sparse vector x can be recovered from the measure-
ments using the following convex optimization:

min ||x||1 + λ||p−Ax||22, (2)

for some appropriate λ depending on the noise variance. In
the absence of noise, under certain conditions on A, (2) ex-
actly recovers x [8].

This formulation is robust even if the vector is not sparse
but is compressible [7,8,18]. A compressible vector has very
few significant coefficients and can be well approximated by
a K-sparse representation. A good model for compressible
vectors is the weak `p ball for p < 1, i.e., the set of vectors
whose coefficients decay as a power law:

|x|(i) ≤ ri
− 1

p , 1 ≤ i ≤ N (3)

where x = (x1, x2, . . . xN ) and x(i) is i-th largest element of
x [8].

In the same framework, a vector might be sparse in a
sparsity-inducing basis W instead of the canonical domain.
Specifically, if x = W s, where s is sparse instead of x, and
W is the sparsity-inducing basis, then (1) becomes

p = AW s + e. (4)

Thus the problem is reformulated as the recovery of a sparse
s from y, acquired using the measurement matrix AW .

4.3 Global Flow
Figure 1 shows the global flow of our method. A num-

ber of random input vectors are applied to the circuit, and
the leakage current corresponding to each input vector is
measured (Steps 1-2). Next, a system of linear equations
is formed where each equation corresponds to one measure-
ment (Step 3). The equation unknowns are the (normalized)
leakage current variations of each gates. The straightfor-
ward way to estimate the IC’s leakage tomogram is to use
`2-norm optimization (Steps 4a-5a). However, our method
exploits the sparsity of the statistical leakage variations and
the compressive sensing theory to efficiently estimate the
leakage tomogram (Steps 4b-5b). Compressive sensing uti-
lizes the `1-norm optimization. We compare the quality of
the leakage tomograms for `1 and `2-norm optimizations on
standard benchmark circuits.

g2
g4

Input1

Input2

Input3

g3g1

Figure 2: A simple logic circuit. The power con-
sumption is a function of the input vector.

input vector NAND-2 NOR-2
00 0.776 nW 17.41 nW
01 10.39 nW 4.112 nW
10 4.137 nW 7.581 nW
11 15.15 nW 3.527 nW

Table 1: Static power for different inputs.

5. NONINVASIVE TOMOGRAPHY
This section introduces the complete measurement method

for noninvasive gate-level characterization. First, we apply
different inputs to the circuit and measure the total chip’s
leakage current for each input. Then we setup and solve
an optimization problem to determine the process variation
using the power measurements.

Consider the simple logic circuit in Figure 2 with 3 inputs
and 2 outputs. The nominal power consumption of each gate
for different inputs is shown in Table I. The table shows the
leakage current for 90nm CMOS technology. As a result the
circuit has a different power consumptions for each input
vector. Because of the process variation, the nominal power
consumption of the gate gu is scaled by φu. For example,
if inputs 1, 2, and 3 are 0, 1, and 1 respectively, then the
power consumption of the circuit, denoted by p011, can be
expressed as

p011 = pg1,01φ1 + pg2,11φ2 + pg3,00φ3 + pg4,00φ4

= 4.112φ1 + 15.15φ2 + 0.776φ3 + 17.41φ4, (5)

where pgi,bi
j

is the consumption of gate gi for input bi
j . Note

that bi
j , the input of each gate gi, is a function of the input

vector to the circuit, denoted by bj . For example, in Figure
2, if bj = 011 then b3

j = 00.
In a digital circuit with N gates, for the binary input

vector bj total power consumption pbj is

pbj =

N∑
i=1

pgi,bi
j
φi. (6)

With M input vectors b1, ..., bM , we define the measurement
matrix A as

A =




pg1,b11
pg2,b21

. . . pgN ,bN
1

pg1,b12
pg2,b22

. . . pgN ,bN
2

...
...

...
pg1,b1

M
pg2,b2

M
. . . pgN ,bN

M




.

Also, let p = [pb1 , pb2 , . . . , pbM ]T ,d = [φ1, φ2, . . . , φN ]T .
Then the following system of linear equations determines
the gate sizing variations:

p = Ad. (7)

With N unknown variables (φi, i = 1 . . . N) we need N
independent measurements to completely determine the so-
lution of (6). However, the measurement vectors are usually
dependent. In the presence of power measurement noise, we
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Figure 3: Process variation and its sparse wavelet
transform for a typical circuit. Left variations of a
chip in the spatial domain. Right: variations in the
wavelet domain.

can minimize the `2-norm of the estimation error:

min ||Ad− p||22. (8)

Each input vector bj determines a row of the measurement
matrix A (power vector), according to the circuit topol-
ogy. Thus, the rows of the measurement matrix are not
necessarily independent. To alleviate this dependency, we
use the following input generation method: First, we ran-
domly generate Nt inputs and the corresponding power vec-
tors {a1, a2 . . . aNt}. We then select Nk of them as follows:
Denote the set of power vectors by S and the subspace of
vectors in S by S. Initialize S = {a1}. From the remaining
power vectors select the ai with the largest |a⊥i |, where |a⊥i |
is orthogonal component of ai with respect to S. Add ai to
S. Repeat this procedure until |S| = Nk.

Even using the above input generation algorithm, it might
not be possible to determine the variation of all gates us-
ing (8). In the next section, we use compressive sensing to
further alleviate this problem.

6. FAST TOMOGRAPHY BY COMPRES-
SIVE SENSING

In this section we model the process variation as a sparse
signal, and use compressive sensing to acquire it using very
few measurements (fast tomography). We introduce fast
tomography for chips with gates on regular grids and then
extend this approach for chips with gates on irregular grids.

6.1 Sparse Representation
In this section, we use wavelet bases to sparsely model the

process variations. Specifically, we assume d = W s, where
W is a wavelet basis and s is a sparse vector. Wavelet bases
are very efficient in sparse modeling of spatial correlation,
as shown in the example of Figure 3. The left side of the
figure images variations of a chip in the spatial domain, gen-
erated using the model in Section 4.1. The right side shows
the wavelet transform of the variations. In the wavelet do-
main most of the non-zero coefficients are concentrated in
the upper-left corner of the transform and most of the re-
maining coefficients are close to zero.

The sparsity induced by various wavelet basis expansions
is shown in Figure 4. The figure demonstrates the coefficient
decay rate for a variety of wavelet families on typical 32×32
regular grid circuits generated using the model in Section
4.1. The figure and our preliminary experiments suggest
that the Daubechies 9 (db9) wavelet basis is a very good
sparsity-inducing basis for the process variation. In the re-
mainder of this paper, we use the Daubechies 9 wavelet to
model the sparsity in the process variation.
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Figure 5: An example of gates on an irregular grid.

6.2 Regular Grid Tomography
In this section we assume that the logic gates are lo-

cated on a regular T × R grid on the chip. The matrxix
of process variation on the regular grid is denoted by H =
{hs,t}s=1...T,t=1...R, where hs,t is variation of the gate lo-
cated at the (s, t)-th point of the grid. We stack all the
elements of the matrix H in a long column vector Φ.

Using the wavelet basis to model the spatial correlation
of the process variation, (7) becomes:

p = AΦ + e = AW s + e. (9)

The sparse s can be recovered using (2):

min ‖s‖1 + λ‖AW s− y‖22. (10)

The process variation Φ is then recovered using Φ = W s.

6.3 Irregular Grid Tomography
In practice, because of the area and the logic gate con-

straints, the gates are not located on regular grids. An ex-
ample of gate placement is shown in Figure 5. We overcome
this problem using a dense regular grid such that the center
of each gate is close to some grid point for all the gates in
the circuit. We assign the variation of each gate gu to the
point on the regular grid that is closest to the center of the
gate. If there are more than one closest points, we select one
of them randomly. The remaining grid points are assigned
to free variables that do not correspond to physical gates
and do not affect the measurements.

The remainder of the measurement process is similar to
Section 6.2. The points on the regular grid are mapped to
a column vector Φ, which is measured by a measurement
matrix A as in (9). Note that if the i-th element of the Φ is
a free variable not assigned to any gate variation, then i-th
column of A is zero. The vector Φ is still spatially correlated
and therefore sparse in the wavelet domain, and it can be
recovered through s in (10). In the recovered Φ the free
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Figure 6: Sorted singular values.

variables can be ignored since they do not correspond to
physical gates.

7. EVALUATION RESULTS
In this section, we evaluate the performance of `2-norm

optimization and `1-norm regularization for chip tomogra-
phy. After we discuss the power measurement dependency,
we compare the `2-norm and the `1-norm regularization meth-
ods on a number of ISCAS’85 benchmarks.

7.1 Measurement Matrix Evaluation
The functionality of the IC imposes dependencies in the

logic gate statuses. Thus, the power vectors for each input
(i.e., the rows of the measurement matrix A) are not nec-
essarily independent. In this section we use the Singular
Value Decomposition (SVD) to quantify the dependency of
the rows of A. SVD is a common method for identifying the
linear dependency among the vectors.

A matrix with N independent rows has N non-zero sin-
gular values. The sorted singular values of C432 and C880
circuits are shown in Figure 6 for a measurement matrix
with M = 6 ×N measurements, where N is the number of
gates. The singular values for each circuit are normalized
such that the largest singular value is 1. The figure shows
that the singular values decay rapidly; the 50th singular val-
ues in both circuits are less than 5% (0.05).

This decay suggests that it is not possible to find the vari-
ation of all gates independently because there is no infor-
mation about the null space of the measurement matrix,
N (A) = {y ∈ RN |Ay = 0}. Thus, we can only estimate the
variation in a subspace S that does not contain N (A).

We use the Gram-Schmidt orthogonalization on the mea-
surement vectors to find a basis for the subspace S. Gram-
Schmidt is an efficient sequential procedure that produces
an orthonormal basis set from a number of vectors. We use
it to efficiently compare the `2-norm optimization and the
`1 regularization methods on the identifiable subspace of the
data. We determine that t-dimensional subspace using the
first t vectors of Gram-Schmidt.

7.2 Tomography Results
To study the performance of the proposed tomography

method, we simulated the process variation on a number of
ISCAS’85 benchmarks using the variation model in Section
4.1. A total of 12% variation is assumed in the simulations.
Based on the data in [3] and [12], 20% of the total varia-
tion is inter-die variation, 60% is spatial correlated intra-
die variation, and 20% is random uncorrelated variation.
To model the leakage current (static power), we used the
HSpice simulator on 90nm CMOS transistor technology and
the DRAGON [19] placement tool.
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Figure 7: Variation estimation error vs. percent of
the power measurement noise.
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Figure 7 presents the variation estimation error for the
C432 and the C880 benchmark circuits. The horizontal axis
is the power measurement noise and the vertical axis is the
variation estimation error. The variation estimation is cal-
culated in a N/4-dimensional subspace, where N is the num-
ber of gates. Note that by construction the estimation space
is orthogonal to the null space of the measurement matrix.
Thus, for low noise measurements the `2-norm optimization
and `1-norm regularization are similar. As the noise level
increases, the `1-norm regularization performs significantly
better than the `2-norm optimization. For 10% measure-
ment noise, the `1-norm regularization estimates the varia-
tion about 40% better than `2-norm optimization method.

The number of measurements also affects the estimation
error. Figure 8 presents the variation estimation error versus
number of measurements. The horizontal axis is the ratio of
measurements to the total number of the gates in the circuit.
The variation is estimated on an N/4-dimensional subspace.
As the number of measurements increases, `1-norm regular-
ization and `2-norm optimization have closer performances.
It is so because as the number of measurement increases,
they cover most of the identifiable directions. Thus sparsity
is not as helpful in the reconstruction and the errors of the
`1-norm and the `2-norm optimization become closer.

Table 2 shows tomography results on different benchmark
circuits. We used the software package SIS with NAND2,
NAND3, NAND4, NOR2, NOR3, NOR4, and inverters to
map the circuit to the logic gates. The second column shows
the number of gates and the third column reports the num-
ber of input pins. For each circuit we used the same num-
ber of measurements as the number of gates, reported in
the fourth column. The fifth column shows the ratio of the
N/4-th singular value of the measurement matrix to the 1-
st one. The N/4 and the N/7-dimensional subspaces—the
sizes of which are reported in the sixth column—were es-
timated using the Gram-Schmidt procedure, and both the
`1 and `2-norm optimization methods were evaluated. The



Circuit properties 3% error 6% error 9% error

name #gates #inputs #meas
σN/4

σ1
subspace `1 error `2 error `2 error `2 error `1 error `2 error

C432 206 36 206 0.031 51 4.36 5.73 7.49 11.46 10.82 17.19
29 2.81 3.45 4.97 6.90 7.24 10.35

C499 532 41 532 0.0088 133 4.45 4.67 8.15 9.04 11.97 13.48
76 2.35 2.47 4.44 4.74 6.57 7.04

C880 353 60 353 0.024 88 4.66 5.62 8.76 11.24 12.94 16.86
50 3.00 3.59 5.74 7.18 8.51 10.76

C1355 517 41 517 0.012 129 6.30 8.31 9.12 14.99 12.51 22.01
73 3.58 4.37 5.35 7.84 7.37 11.48

C1908 615 33 615 0.0041 153 7.06 7.46 10.93 13.71 15.24 20.19
87 2.91 3.14 4.88 5.87 7.00 8.67

C3540 1131 50 1131 0.0067 282 7.63 9.75 13.8 19.5 20.28 29.25
161 4.68 5.50 8.63 11.79 12.72 17.69

C5315 1796 178 1796 0.007 449 6.35 7.80 12.12 15.58 18.00 23.38
256 4.04 4.72 7.82 9.40 11.63 14.10

c8 165 28 165 0.040 41 5.05 5.55 8.78 11.11 12.65 16.66
23 3.21 3.43 5.45 6.86 7.80 10.29

Table 2: Variation estimation error for different ISCAS’85 benchmark circuits.

remaining columns demonstrate the results for 3%, 6%, and
9% measurement noise. On average, `1-norm optimization
performs about 30% better in estimating the variations.

8. CONCLUSION
We introduced a new method for noninvasive estimation

of the specific leakage variation tomogram for each manu-
factured chip. The external leakage current measurements
were used in a linear optimization framework where the gate
leakage variations were the unknowns. Because of the cor-
relations among the gate leakage currents on a chip, the
tomogram showing the 2D leakage variations across the IC
could be sparsely represented. We exploited the sparsity of
the variations in the wavelet domain and the new theory of
compressive sensing for fast and efficient estimation of the
chip’s leakage tomogram. Evaluation results on ISCAS’85
benchmarks demonstrated the effectiveness of the approach.
For example, we showed that tomography by compressive
sensing in average yields about 30% lower estimation error
compared with the traditional least-square estimation.
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