736 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 2, MARCH/APRIL 2021

CuRTAIL: ChaRacterizing and Thwarting
Adversarlal Deep Learning

Mojan Javaheripi
Bita Darvish Rouhani

, Student Member, IEEE, Mohammad Samragh
, Student Member, IEEE, Tara Javidi, and Farinaz Koushanfar, Fellow, IEEE

, Student Member, IEEE,

Abstract—Recent advances in adversarial Deep Learning (DL) have opened up a new and largely unexplored surface for malicious
attacks jeopardizing the integrity of autonomous DL systems. This article introduces CuRTAIL, a novel end-to-end computing framework
to characterize and thwart potential adversarial attacks and significantly improve the reliability (safety) of a victim DL model. We formalize
the goal of preventing adversarial attacks as an optimization problem to minimize the rarely observed regions in the latent feature space
spanned by a DL network. To solve the aforementioned minimization problem, a set of complementary but disjoint modular redundancies
are trained to validate the legitimacy of the input samples. The proposed countermeasure is unsupervised, meaning that no adversarial
sample is leveraged to train modular redundancies. This, in turn, ensures the effectiveness of the defense in the face of generic attacks.
We evaluate the robustness of our proposed methodology against the state-of-the-art adaptive attacks in a white-box setting considering
that the adversary knows everything about the victim model and its defenders. Extensive evaluations for analyzing MNIST, CIFAR10, and
ImageNet data corroborate the effectiveness of CURTAIL framework against adversarial samples. The computations in each modular
redundancy can be performed independently of the other redundancy modules. As such, CuRTAIL detection algorithm can be completely
parallelized among multiple hardware settings to achieve maximum throughput. We further provide an open-source Application
Programming Interface (API) to facilitate the adoption of the proposed framework for various applications.

Index Terms—Deep learning, model reliability, adversarial samples, white-box attacks

1 INTRODUCTION

ECURITY and safety consideration is a major obstacle to the

wide-scale adoption of emerging learning algorithms in
sensitive scenarios, such as intelligent transportation, health-
care, and video surveillance applications [1], [2]. While
advanced learning techniques are essential for enabling
coordination between autonomous agents and the environ-
ment, a careful analysis of their vulnerabilities and their reli-
ability in face of adversarial attacks is still in its infancy.

Adversarial samples [3], [4], [5] are carefully crafted input
instances which lead machine learning algorithms into mis-
classifying while the input changes are imperceptible to the
human eye. For instance, in the case of traffic sign classifiers
employed in self-driving cars, an adversary can add a spe-
cific imperceptible perturbation to a legitimate “stop” sign
sample and fool the DL model to classify it as a “yield” sign,
thus, jeopardizing the safety of the vehicle as shown in [1].
Thereby, it is highly important to identify and reject risky
samples to ensure the integrity of DL models used in autono-
mous systems such as unmanned vehicles/drones.

This paper provides an end-to-end solution (called CuR-
TAIL) to characterize and thwart adversarial attacks for
DL models in an online manner. Our proposed solution
addresses three main challenges regarding the adversarial
attacks in the context of deep learning.

o The authors are with the University of California San Diego, La Jolla, CA
92093 USA. E-mail: {mojan, msamragh, bita, tjavidi, farinaz}@ucsd.edu.

Manuscript received 7 June 2018; revised 28 Aug. 2020; accepted 2 Sept. 2020.
Date of publication 15 Sept. 2020; date of current version 12 Mar. 2021.
(Corresponding author: Bita Darvish Rouhani.)

Digital Object Identifier no. 10.1109/TDSC.2020.3024191

(i) Understanding the root cause of DL wvulnerabilities to
adversarial samples.Our hypothesis is that the vulnerability
of Deep Neural Networks (DNNs) to adversarial samples
originates from the existence of rarely explored sub-spaces
in each feature map. This phenomenon is particularly
caused by the limited access to labeled data and/or ineffi-
ciency of regularization algorithms [6], [7]. Fig. 1 provides a
simple illustration of the partially explored space in a two-
dimensional setup. We provide statistical analysis and
empirically back up our hypothesis by extensive evalua-
tions on various DL benchmarks and attacks.

(ii) Characterizing and thwarting the adversarial subspace for
model assurance. A line of research has shown that there is a
trade-off between the robustness of a model and its accu-
racy [8], [9]. Taking this into account, instead of making a
single model that is both robust and accurate, we introduce
a new defense mechanism called Modular Robust Redun-
dancy (MRR). In MRR methodology, the victim model is
kept as is while separate defender modules are trained to
checkpoint the hidden features and assess the reliability of
the victim’s prediction. Each defender module characterizes
the explored sub-space in the pertinent layer by learning
the probability density function (PDF) of legitimate data
points and marking the complement sub-spaces as rarely
observed regions. Once such characterization is obtained,
MRRs evaluate the input sample in parallel with the victim
model and raise alarm flags for data points that lie within
the rarely explored regions.

(iii) Just-in-time online defense against adversarial attacks. We
propose CuRTAIL, the first end-to-end hardware-acceler-
ated framework that enables robust and just-in-time defense
against adversarial attacks on DNNs. CuRTAIL is devised

1545-5971 © 2020 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 12,2022 at 20:08:35 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4062-8807
https://orcid.org/0000-0003-4062-8807
https://orcid.org/0000-0003-4062-8807
https://orcid.org/0000-0003-4062-8807
https://orcid.org/0000-0003-4062-8807
https://orcid.org/0000-0003-1404-527X
https://orcid.org/0000-0003-1404-527X
https://orcid.org/0000-0003-1404-527X
https://orcid.org/0000-0003-1404-527X
https://orcid.org/0000-0003-1404-527X
https://orcid.org/0000-0002-8412-4320
https://orcid.org/0000-0002-8412-4320
https://orcid.org/0000-0002-8412-4320
https://orcid.org/0000-0002-8412-4320
https://orcid.org/0000-0002-8412-4320
mailto:mojan@ucsd.edu
mailto:msamragh@ucsd.edu
mailto:bita@ucsd.edu
mailto:tjavidi@ucsd.edu
mailto:farinaz@ucsd.edu

JAVAHERIPI ET AL.: CURTAIL: CHARACTERIZING AND THWARTING ADVERSARIAL DEEP LEARNING 737

Rarely explored

: N
Iy, \ i &y |
A I - -~
.\I /J.
> ¥
_,-‘ A A 1 rey A A
A A - - A A
ry o A
JAa A LS ahad =
B A A A A 'Y
Z Z

(a) (b)

Fig. 1. (a) Data points (green and blue squares) can be easily separated
in one-dimensional space. Extra dimensions add ambiguity in choosing
the decision boundaries: all shown boundaries (dashed lines) result
in the same classification accuracy but are not equally robust to noise.
(b) The rarely explored space in a learning model leaves room for adver-
saries to manipulate the non-critical dimensions (Z; in this figure) and
mislead the model by crossing the decision boundaries.

based on algorithm/hardware co-design to enable safe DL
execution while customizing system performance in terms
of latency, energy consumption, and/or memory footprint
based on the available resource. CuRTAIL leverages FPGAs
to provide fine-grained parallelism and just-in-time response
by our defender modules. The customized data path for
memory access on FPGA helps to improve the overall system
energy efficiency.

We consider a white-box attack model where the attacker
knows everything about the victim model including its
architecture, learning algorithm, parameters, and defenders.
This threat model represents the most powerful attack that
can endanger real-world applications. We validate the secu-
rity of our proposed approach for different DL benchmarks
including MNIST, SVHN, CIFAR, and a subset of ImageNet
data. The explicit contributions of this paper are as follows:

e Proposing CuRTAIL, the first algorithm/hardware
co-design enabling online defense against adversar-
ial samples for DL models. Our methodology is
unsupervised and robust against the most challeng-
ing attack scenario to date.

e Introducing Modular Robust Redundancy as a viable
countermeasure for adversarial attacks on DL. CuR-
TAIL uses dictionary learning and probability den-
sity functions to statistically detect abnormalities in
the input data.

e Providing quantitative metrics to characterize the
sensitivity of DL layers from a statistical point of
view. Based on the result of our analysis, we provide
new insights on the reason behind the existence of
adversarial transferability.

e Implementing the first streaming-based DL defense
using FPGAs. CuRTAIL devises an automated cus-
tomization tool to adaptively maximize model
robustness against adversaries while complying with
the underlying hardware resource constraints, i.e.,
runtime, energy, and memory.

e Performing extensive evaluations in both black-box
and adaptive white-box settings against various attack
methodologies including Fast-Gradient-Sign [10],
Jacobian Saliency Map attack [3], Deepfool [4], Basic
Iterative Method [11], and Carlini&WagnerL2 [5], [12].
Thorough performance comparison on various hard-
ware platforms including CPUs, GPUs, and FPGAs

corroborates CuRTAIL’s algorithmic practicality and
system efficiency.

e Devising an automated accompanying API to facili-
tate adoption/integration of CuRTAIL for reliable
realization of different DL applications by data scien-
tists and engineers.'

An earlier version of CuRTAIL was presented in [13]. In
this article, we extend CuRTAIL framework by: (i) Provid-
ing a thorough statistical analysis to elaborate on the root
cause of DL model vulnerabilities to adversarial attacks
(Section 3). The results of our analysis, in turn, sheds light
on the transferability of adversarial samples in between dif-
ferent models (Section 6.6). (ii) Devising a sensitivity analy-
sis module (Section 4.4). This added module, in turn,
enables careful evaluation of layer-wise vulnerability to
determine the most effective location for checkpointing pur-
poses. (iii) Delineating the hardware architecture of latent
(Section 5.1.1) and input checkpoints (Section 5.1.2). We fur-
ther characterize the computation complexity and latency of
each CuRTAIL’s custom layer in Section 5.3. (iv) Extending
our evaluations on new visual datasets with higher com-
plexity in Section 6.3.

2 BACKGROUND AND PRELIMINARIES

A machine learning model refers to a function f and its
associated parameters 0 that are specifically trained to
infer/discover the relationship between input samples x €
{z1,...,zy} and the ground truth labels y € {y1,...,yn}-
Each output observation y; can be either continuous as in
most regression tasks or discrete as in classification applica-
tions. Machine learning algorithms typically aim to find the
optimal parameter set 6 such that a loss function £ that cap-
tures the difference between the output inference and
ground-truth labeled data is minimized

1
0= argg%nﬁzlﬁ(f(iﬂiﬁ)v Yi)- M

In this paper, we focus on state-of-the-art deep learning
models due to their popularity in the realization of various
autonomous learning systems. Consistent with the literature
in this field, we specifically focus our discussions on the
classification tasks using DL methodology. However, we
emphasize that our proposed core concept is generic and
can be used for reliable deployment of different learning
techniques such as generalized linear models, regression
methods (e.g., Lasso), and kernel support vector machines.

2.1 Deep Learning

Deep learning is an important class of machine learning
algorithms that has provided a paradigm shift in our ability
to comprehend raw data. A DL network is a hierarchical
learning topology consisting of several processing layers
stacked on top of one another. Each layer extracts features
from its input and feeds it to the succeeding layer. This hier-
archical structure gradually maps the input data samples to
higher-level abstractions. The output from the last layer in
the network is used for classification or regression purposes.

1. Implementation at https://github.com/Bitadr/DeepFense

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 12,2022 at 20:08:35 UTC from IEEE Xplore. Restrictions apply.

https://github.com/Bitadr/DeepFense

738 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 2, MARCH/APRIL 2021

The most common core processing layers used in DL mod-
els areConvolution andDense layers. A Dense layer performs
matrix-vector multiplication on its input. Convolution
layers take channels of input images, convolve them with a
set of 3-D kernels, and generate a stack of output channels.
The output a linear layer is passed through anActivation
layer which applies a non-linear function to the data, allow-
ing the network to model non-linear and complex patterns.
Pooling layers are implemented to reduce dimensionality as
well as make the model invariant to local translation.

During training, model parameters are automatically
learned in the service of the task. Training a DL network
involves two main steps: (i) forward propagation, and (ii)
backward propagation. In forward propagation, the raw val-
ues of the input data measurements are mapped to higher-
level abstractions based on the current state of the DL param-
eters (6). The acquired data abstractions are used to predict
the inference label in the last layer of the DL network based
on a Softmax regression. In backward propagation, an opti-
mization is performed to update the DL parameter set 6 such
that the distance between network prediction (output of for-
ward propagation) and the ground-truth label is minimzied.
Once the DL network is fully trained, the model is employed
as a classification oracle in the inference (execution) phase.
During this phase, model parameters are fixed and predic-
tion is performed through one round of forward propagation
for each input sample. Attacks based on adversarial samples
target the DL execution phase and do not involve any tam-
pering with the training procedure.

2.2 Attack Models

Adversarial machine learning can be cast as a zero-sum
Stackelberg game between the machine learning oracle (vic-
tim) and the attacker. Depending on the attacker’s knowl-
edge, the threat model can be categorized into three classes:

o White-box attacks. The attacker knows everything
about the victim model including the learning algo-
rithm, model topology and parameters, as well as
the defense mechanism, the corresponding defender
parameters.

e Gray-box attacks. The attacker knows the learning
algorithm, model topology, and defense mechanism
and has no access to the model/defender parameters.

e Black-box attacks. The attacker does not know anything
about the pertinent machine learning algorithm,
ML model, or defense mechanism. This attacker can
merely obtain the outputs of the victim ML model by
providing input samples. In this setting, the adversary
can perform a differential attack by observing the out-
put changes with respect to input variations.

A complete taxonomy of adversarial capabilities and
goals are provided in [3], [14], [15]. In this paper, we con-
sider the white-box threat model as the most powerful
attacker that can appear in real-world machine learning
applications.

In an adversarial setting, the attacker aims to find a per-
turbed adversarial sample (z“) such that it incurs minimal
distance from the source sample (z°) while its correspond-
ing output is sufficiently different to mislead the victim.
Fig. 2 illustrates an example, where the image on the left is

& il
(b)

Fig. 2. An example of (a) input data and (b) its corresponding adversarial
sample. The added noise is imperceptible but can cause the victim
model to misclassify.

initially classified correctly as a dog by the victim model
while adding a small amount of perturbation to the original
image has misled the victim to infer it as a black swan (right
image). Clearly, if the source instance is already misclassi-
fied by the victim model (f(z*,6) # y*), the adversarial
problem becomes trivial. Therefore, we particularly focus
on instances x* that could have been classified correctly by
the oracle before adding structured adversarial noises
(f(z*,0) = o).

Several attack mechanisms have been proposed in the lit-
erature to craft adversarial samples. We evaluate CuRTAIL
performance against a variety of attacks to empirically con-
firm the generalizability of out unsupervised MRR method-
ology across a wide range of attacks. In particular, we have
evaluated CuRTAIL against (i) Fast Gradient Sign (FGS) [10],
(i) Jacobian Saliency Map Attack (JSMA) [3], (iii) Deep-
fool [4], (iv) Basic Iterative Method (BIM) [11], and (v) Carli-
ni&WagnerL2 adaptive attacks [5], [12] . In the following, we
provide a brief explanation of the attack algorithms evalu-
ated in this paper.

Fast-Gradient-Sign. FGS attack [10] crafts an adversarial
sample as 2/ =z +¢€- Sign(%), where C'is the cost function
of the neural network, and Sign(-) outputs the sign of its
operand. The attack is parameterized by ¢, which deter-
mines the amount of additive perturbation.

Basic Iterative Method. BIM [11] is an iterative version of
FGS characterized by the number of iterative updates, niters,
and the per-iteration perturbation coefficient, e.

Deepfool. This algorithm iteratively modifies the input
image based on a specific update rule to obtain an adversar-
ial sample [4]. In each iteration, the perturbation vector % is
normalized and added to the sample. Deepfool is parame-
terized by the number of iterative updates njc;.

Carlini&WagnerL2. This attack is formalized as a minimi-
zation problem where the objective is the Ly norm of the
perturbation vector. Carlini&WagnerL2? proposes an itera-
tive method for solving this minimization objective. The
detailed set of parameters for the attack is provided in [5].

3 STATISTICAL ANALYSIS OF ADVERSARIAL
SAMPLES

Let us denote the output of the ith layer of a DL model
given an input sample z by f;(x). One can construct a prob-
abilistic density function Px(fi(z)) for each layer where X
is a random variable drawn from the model input space.
Our conjecture is that adversarial samples cannot lie in
high-probability regions of the PDF function Px(.), which is
learned using the samples drawn from legitimate training

2. For brevity we denote this attack as Carlinil.2 in the paper.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 12,2022 at 20:08:35 UTC from IEEE Xplore. Restrictions apply.

JAVAHERIPI ET AL.: CURTAIL: CHARACTERIZING AND THWARTING ADVERSARIAL DEEP LEARNING 739

-
2

B Adversarial Samples
EEE Legitimate Samples

= =
=] o
T W

-
o

Number of Samples

o

10-400 10200

T (7

10600

1p-800

Fig. 3. Histogram of the estimated PDF for adversarial (red) and legiti-
mate (blue) samples. Adversarial samples are generated using Deepfool
for Lenet architecture. The PDF is learned in the second-to-last layer of
the network.

data. More formally, the expected value of the probability
corresponding to legitimate samples is higher than that of
adversarial samples

E(Px(fi(z%)) > > E(Px(fi(2"))), 2

where E(-) is the expectation and z* and z“ are safe and
adversarial input samples, respectively.

This difference between the expected values of the proba-
bility distribution can be leveraged to characterize and
thwart adversarial attacks. To do so, CuRTAIL approxi-
mates the PDF of each layer by training a set of defender
modules, as will be explained in Section 4. Fig. 3 empirically
validates the criterion outlined in Eq. (2). In this example,
the PDF of benign samples in the second-to-last layer
(Px(fy-1(z)), where N is the number of model layers) of
the LeNet model is obtained by passing through legitimate
MNIST data points and acquiring the corresponding activa-
tions. Once the PDF is learned, we generate adversarial
samples z* and compute Px(fy_1(z")). Fig. 3 depicts the
probabilistic histogram of legitimate and adversarial sam-
ples based on the learned PDF. As shown, the expected
value of legitimate samples is orders of magnitude greater
than that of adversarial samples.

4 CuURTAIL METHODOLOGY

Fig. 4 demonstrates the high-level block diagram of MRR
methodology. In our proposed countermeasure, a number
of modular redundancies (checkpoints) are trained to char-
acterize the data density distribution in the space spanned
by the victim model. The defender modules are then used
in parallel to checkpoint the reliability of the ultimate pre-
diction and raise an alarm flag for risky samples. We refer
to MRR modules that checkpoint the intermediate DL layers
as “latent defenders”. Whereas, the redundancy modules
operating on the input space are referred to as the “input
defenders”. We use the term checkpoints and modular redun-
dancies interchangeably throughout the paper.

4.1 Latent Defenders

The goal of each intermediate defender (checkpointing)
module is to learn the PDF of the explored sub-spaces in a
particular DL feature map. The learned density function is
then used to identify the rarely observed regions. We con-
sider a Gaussian Mixture Model (GMM) as the prior proba-
bility to characterize the data distribution at each checkpoint
location. We emphasize that our proposed approach is rather

Latent
Checkpoints

—

Input
Checkpoint

Fig. 4. High-level block diagram of MRR methodology. Multiple defenders
checkpoint the input and intermediate activation maps in parallel. The out-
put of the victim neural network (green neurons) is augmented with a con-
fidence measure (red neuron) determining the prediction legitimacy.

generic and is not restricted to the GMM distribution. The
GMM distribution can be replaced with any other prior
depending on the application data.

4.1.1 Training a Single Latent Defender

To effectively characterize the explored sub-space as a
GMM distribution, one is required to minimize the entan-
glement between pairs of Gaussian distribution (corre-
sponding to every two different classes) while decreasing
the inner-class diversity. Fig. 5 illustrates the high-level
block diagram of the training procedure for devising a par-
allel checkpointing module. Training a defender module is
a one-time offline process and is performed in three steps:

@ Replicating the victim neural network and all its fea-
ture maps. An L, normalization layer is inserted in the
desired checkpoint location. The normalization layer maps
the latent feature variables, f(z), into the euclidean space
such that the acquired data embeddings live in a d-dimen-
sional hyper-sphere, i.e., || f(z)|l, = 1. This normalization is
crucial as it partially removes the effect of over-fitting to
particular data samples that are highly correlated with the
underlying DL parameters. The L, norm is selected to be
consistent with our assumption of GMM prior distribution.
This norm can be easily replaced by an arbitrarily user-
defined norm through our accompanying APL

@ Fine-tuning the replicated neural network to enforce
disentanglement of data features (at a particular checkpoint
location) to characterize the PDF of occupied (explored)
subspaces. To do so, we optimize the defender module by
adding the following loss function to the conventional cross
entropy loss

y [IC7 = f@)I° = Sizy IC" = f@)I? + Zu(lC7]| = 1)].

lossy

lossg lossg

(3)
Here, y is a trade-off parameter that specifies the contribution
of the additive loss term, f(z) is the corresponding feature
vector of input sample z at the checkpoint location, y* is the
ground-truth label, and C'" denotes the center of all data
abstractions (f(z)) corresponding to class i. The center values
C' and intermediate feature vectors f(z) are trainable varia-
bles that are learned by fine-tuning the defender module.
Fig. 6 illustrates the optimization goal of each defender
module per Eq. (3). The first term (loss;) in Eq. (3) aims to
condense latent data features f(z) that belong to the same
class. Reducing the inner-class diversity, in turn, yields a
sharper Gaussian distribution per class. The second term

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 12,2022 at 20:08:35 UTC from IEEE Xplore. Restrictions apply.

740 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 2, MARCH/APRIL 2021

Victim model

____________________ -

Replicating the
victim model

Retrain the replicate

to enforce separability »

1
Ensemble learning 1 Defender
of subspaces module

Features:

Security
parameter

Fig. 5. Block diagram of the training procedure for devising parallel redundancy modules. Each latent defender is built by minimizing the entangle-
ment of intermediate data features in a Euclidean space at a particular checkpoint location. This goal is achieved through several rounds of iterative
realignment of data abstractions. The latent data space is then characterized as an ensemble of lower dimensional sub-spaces to effectively learn
the PDF of explored regions and detect atypical samples based on a user-defined security parameter.

(losss) intends to increase the intra-class distance between
different categories and promote separability. The composi-
tion of the first two terms in Eq. (3) can be arbitrarily small
by pushing the centers to (C' < £o00). We add the term,
losss, to ensure that the underlying centers lie on a unit d-
dimensional hyper-sphere and avoid divergence in training
the latent defender modules.

Figs. 7a and 7b demonstrate the distance of legitimate
(blue) and adversarial (red) samples from the correspond-
ing centers C' in a checkpoint module before and after
retraining. The centers C’ before fine-tuning the checkpoint
(defender) module are equivalent to the mean of the data
points in each class. As shown, fine-tuning the defender
module with proposed objective function can effectively
separate the distribution of legitimate samples from mali-
cious data points. Note that training the latent defender
modules is carried out in an unsupervised setting, meaning
that no adversarial sample is included in the training phase.

® High dimensional real-world datasets can be repre-
sented as an ensemble of lower dimensional sub-spaces [17],
[18]. As discussed in [17], under a GMM distribution
assumption, data points belonging to each class can be char-
acterized as a spherical density in two sub-spaces: (i) The
sub-space where the data actually lives and (ii) its orthogo-
nal complementary space. We use High Dimensional Dis-
criminant Analysis (HDDA) [17] to learn the mean and
conditional covariance of each class as a composition of
lower dimensional sub-spaces.

The learned PDF variables (i.e., mean and conditional
covariance) are used to compute the probability of a feature
point f(z) coming from a specific class. In particular, for each
incoming test sample z, the probability p(f(x)|y') is evalu-
ated where ¥ is the predicted class (output of the victim neu-
ral network) and f(z) is the corresponding data abstraction
at the checkpoint location. The acquired likelihood is then
compared against a user-defined cut-off threshold which we

o~
sref ()

ciH"

Fig. 6. Defender module optimization objective.

refer to as the security parameter. The Security Parameter (SP)
is a constant number in the range of [0% — 100%] that deter-
mines the hardness of defender modules. Fig. 8 illustrates
how the SP can control the hardness of the pertinent decision
boundaries. In this example, we have depicted the latent
features of one category that are projected into the first two
Principal Component Analysis (PCA) components in the
euclidean space (each point corresponds to a single input
image). The blue and black contours correspond to security
parameters of 10 and 20 percent, respectively. For example,
10 percent of the legitimate training samples lie outside the
contour specified with SP = 10%.

An active adversary can find a structured noise that moves
the data point from one cluster to the center of the other clus-
ters; thus fooling the defender modules (Fig. 11a). The risk of
such attack approach is significantly reduced in our proposed
MRR countermeasure due to three main reasons: (i) Increas-
ing intra-class distances in each checkpointing module;
The latent defender modules are trained such that not only
the inner-class diversity is decreased, but also the distance
between each pair of different classes is increased (see
Eq. (3)). (ii) Use of parallel checkpointing modules as
explained in Section 4.1.2; the attacker requires to simulta-
neously deceive all the defender models in order to succeed.
(iii) Learning a separate defender module in the input space
to validate the Peak Signal-to-Noise Ratio (PSNR) level of the
incoming samples as discussed in Section 4.2.

4.1.2 Training Multiple Latent Defenders

In this section, we explain our methodology for creating
multiple defender modules that are negatively correlated.

EE Legitimate Samples 2000 = Adversarial Samples
i“] 350, = Adversarial Samples oo = Legitimate Samples
E ::E 1500
7] 1250
‘S 200 1000
E 150 750/
g 100 500
2 50 250/
o 0.2 06 0.8 10 000 025 050 075 100 125 150 175

0.4
Distance to Center Distance to Center

(a) (b)

Fig. 7. (a) Distance of legitimate (blue) and adversarial (red) samples
from the corresponding centers C’ before and (b) after realignment of
data samples. In this example, we consider the LeNet model [16] trained
on MNIST. The checkpoint is inserted in the second-to-last layer and
adversarial samples are generated by FGS attack.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 12,2022 at 20:08:35 UTC from IEEE Xplore. Restrictions apply.

JAVAHERIPI ET AL.: CURTAIL: CHARACTERIZING AND THWARTING ADVERSARIAL DEEP LEARNING 741

Fig. 8. lllustration of the effect of security parameter on the detection pol-
icy. A high SP leads to a tight boundary which treats most samples as
adversarial examples.

Specifically, two MRRs are negatively correlated if deceiv-
ing one of them raises a high suspicion in the other one and
vice versa. Consider the ith MRR that maps a legitimate
input x to feature vector f;(x), where f;(z) is close (in terms
of euclidean distance) to the ground-truth cluster center
CY. An adversary trying to mislead this defender would
generate a perturbed input x + 7 such that fj(z + n) is far
from CY. Negative correlation means that for the subse-
quent MRR with feature vector f;1(x), adding the perturba-
tion n will bring fi11(x + 1) closer to its ground-truth cluster
center C’f’il. Fig. 9 shows this effect where the colored cloud
represents the data points in each MRRs latent feature map
and the decision boundary specified by the security param-
eter (SP) is shown with the oval contour.

To mitigate such adaptive attacks, we propose to train a
Markov chain of detector modules as illustrated in Fig. 10.
To build this chain of MRRs, we first train a single
defender module as described in Section 4.1. Next, we gen-
erate a new set of training data from samples that are
deemed adversarial for the previous defender module. In
particular, the nth defender of this chain takes an input
data z, generates a perturbation 5, and feeds clip(xz + n) to
the (n + 1)th defender. The perturbation 7 is chosen as n =
91 where L1 is the loss; term in Eq. (3) corresponding to
the nth defender. Given these new perturbed samples,
data points that deviate from the centers in the nth
defender will be close to the corresponding center in the
(n+ 1)th defender. As such, deceiving all the defenders
requires a larger perturbation.

4.2 Input Defender
We leverage dictionary learning and sparse signal recovery
techniques to measure the PSNR of each incoming sample
and automatically filter out atypical samples in the input
space. Fig. 11b illustrates the block diagram of an input
defender module. An input checkpoint is configured in two
main steps: (i) dictionary learning, and (ii) characterizing
the typical PSNR per class after sparse recovery.

O Dictionary learning; we learn a separate dictionary for
each class of data by solving

Jilx+n)

MRR; MRR;,,

Fig. 9. Enforcing negative correlation between MRRs.

{3 [A Generate
1 data

L
Training | Train Training Train (-0 e
data 1 data 2 2

Fig. 10. Training multiple negatively correlated defenders at each check-
point layer of the DL model.

1 . o .
argmin 2|12 = DV + BV,
Dl

st D} =1,

)
0 S k S Kma.’r~

Here, Z' is a matrix whose columns are pixels extracted from
different regions of input images belonging to category . For
instance, if we consider 8 x 8 patches of pixels, each column
of Z' would be a vector of 64 elements. The goal of dictionary
learning is to find matrix D' that best represents the distribu-
tion of pixel patches from images belonging to class i. We
denote the number of columns in D’ by k.. For a certain
D', the image patches Z' are represented with a sparse
matrix V¢, and D'V is the reconstructed patches. We lever-
age Least Angle Regression (LAR) method [19] to solve the
Lasso problem defined in Eq. (4).

During the execution phase, the input defender takes the
output of the victim DL model (e.g., predicted class i) and
uses Orthogonal Matching Pursuit (OMP) routine [20] to
sparsely reconstruct the input data with the corresponding
dictionary D'. The reconstructed image is formed by denois-
ing all of the non-overlapping patches within the image by
the corresponding class dictionary. Algorithm 1 outlines the
pseudo code of the OMP routine. As shown, Performing
OMP requires iterative execution of three main steps:
(i) finding the best matching sample in the dictionary matrix
D (Line 4 of Algorithm 1), (ii) least-square (LS) optimization
(Line 5 of Algorithm 1), and (iii) residual update (Line 6 of
Algorithm 1). In the provided pseudo code D,, represents
the col' column of the dictionary matrix D, and D, is the
subset of D columns that have been chosen so far in the rou-
tine. The OMP algorithm terminates when the number of
non-zero elements in the output coefficient vector (V) is
more than the sparsity level k.

® Characterizing typical PSNR in each category as
defined in Eq. (5); a benign sample belonging to class ¢
should be well-reconstructed as D'V* with a high PSNR
value, where V* is the optimal solution obtained by the
OMP routine. We profile the PSNR percentile of legitimate
samples within each class and find the corresponding
threshold that satisfies the user-defined security parameter.
If an incoming sample has a PSNR lower than the threshold

Input
| training data Input defender
t os
tae ¥ n
for | Dictionary Charectrizing
teo il learning
i : fae: |

typical PSNR for
sparse recovery

Security
parameter

(a) (b)

Fig. 11. An input defender module is devised based on robust dictionary
learning techniques to automatically filter out test samples that highly
deviate from the typical PSNR of data points within the corresponding
predicted class.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 12,2022 at 20:08:35 UTC from IEEE Xplore. Restrictions apply.

742 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 2, MARCH/APRIL 2021

18

D os

©

m 06

1]

2

‘6 041

3

@ ;; — Latent Defender | = Latent Defender = Latent Defender

o — Input Defender — Input Defender — Input Defender
4o =-Latent+Input Defend ... Lat Input Defend ... Latent+Input Def

o1 0z 03 04 08 o1 0z 03 04 03 01 02 03 04 08

Fig. 12. Adversarial detection rate of input and latent defenders as a
function of the perturbation level for various SP. Here, FGS is used to
generate adversarial samples and the perturbation is adjusted by chang-
ing attack parameter e.

(i.e., high perturbation after reconstruction by the corre-
sponding dictionary), it will be regarded as a malicious data
point

PSNR = 20 logyo(MAX/) — 10 logio(MSE), (5)

where the mean square error (MSE) is defined as the L, dif-
ference of the input image and the reconstructed image
based on the corresponding dictionary, i.e., |7*||. The MAX;
is the maximum possible pixel value of the image (e.g., 255).
Note that since the decision of the defender solely depends
on the norm of the residual vector, |||, there is no need to
explicitly compute the sparse vector V*.

Algorithm 1. OMP Algorithm

Inputs: Dictionary D, input sample V, maximum sparsity level k.
Output: Coefficient vector V*.

" — X

A

: fori=1,..,kdo

A — AT Y argmazen| < L Do > |

V' — argminy|r'=t — D, V||

P il = DAzVi

BARSURE- I oy

Fig. 12 demonstrates the impact of perturbation level on
the pertinent adversarial detection rate for three different
security parameters (cut-off thresholds). In this experiment,
we have considered the FGS attack with different e values on
LeNet MNIST benchmark. Table 2 summarizes the DL model
topology used in each benchmark. The latent defender mod-
ule (checkpoint) is inserted at the second-to-last layers. As
shown, the use of input dictionaries facilitate detection of
adversarial samples with relatively high perturbation (e.g.,
€ > 0.25) while the latent defender effectively distinguishes
malicious samples with very small perturbations. We exten-
sively evaluate the impact of security parameter on system
performance for various benchmarks in Section 6.

4.3 Model Fusion

Fig. 13 depicts the configuration of the defender modules in
the execution phase. Each defender module gets the input
sample x and generates a binary output dj € {0,1} with
value 1 denoting an adversarial sample. Each defender
makes the binary decision based on the security parameter
(SP) discussed in Section 4.1. To aggregate the binary ran-
dom variables {dy,...,dy} into a single decision a, we com-
pute the probability of the input being adversarial as follows:

{p1.p2. s Pu}

Fig. 13. CuRTAIL uses a score-based statistical method to aggregate the
decision of all MRRs.

N

7dnr}) =1- H(l - Pn)dnv

n=1

P(a:1|{d17d2,... (6)

P, = P(a=1ld, = 1).

This formulation resembles the well-known noisy-OR termi-
nology used in statistical learning [21]. In MRR methodol-
ogy, each defender has a parameter P, which indicates the
likelihood of a sample being adversarial given that the nth
defender has labeled it as a malicious sample. If all detectors
have a parameter of P, = 1, then the formulation in Eq. (6) is
equivalent to the logical OR between {d;, ..., dy}.

Inserting P, into the noisy-OR operation enables learning
different weights for different defender modules to improve
adversarial detection rate without increasing false alarms.
In practice, the P, parameters are estimated by evaluating
the performance of each individual defender. For this pur-
pose, we use a subset of the training data and create adver-
sarial samples. In particular, for each legitimate sample z,
we generate z” =z + ¢ - V,(£) where £ is the victim mod-
el’s cross-entropy loss. We next use the generated samples
to obtain P,. By using this generic form of adversary, we
ensure that the calculated P, is attack-agnostic and works
well with different adversaries. The probability P, is esti-
mated as

S True

RL = 77
SFalse + STrue

(7)

where St is the number of adversarial samples that are
correctly detected by defender n and Sg;. denotes the
number of legitimate samples that were mistaken for adver-
saries.In our experiments, we raise alarm flags for samples
with P(a = 1|{d;, ds, ..., d,}) > 0.5.

4.4 Sensitivity Analysis

The effectiveness of adversarial perturbations on DNN clas-
sification can be quantified by their induced variations on
intermediate activations. To study this effect, we extract the
cluster centers corresponding to each hidden layer using a
subset of the (benign) training data. Let X¥" denote the set
of samples with label y*. The corresponding cluster center
C} atlayer [is calculated as

Y =E, [P fiz)), ®)

where f(z) is the layer activations. To reduce dimensional-
ity, we perform PCA (F; operator in Eq. (8)) on the activa-
tion vectors such that more than 99 percent of the energy is
preserved.

The perturbation signal in adversarial samples can be
modeled as an additive noise to the input data. At each

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 12,2022 at 20:08:35 UTC from IEEE Xplore. Restrictions apply.

JAVAHERIPI ET AL.: CURTAIL: CHARACTERIZING AND THWARTING ADVERSARIAL DEEP LEARNING 743

55 Per-layer Sensitivity for ResNet56

=== trend
1.5+ EEE actual values

* bt

layer

11Vxlgnl|

Fig. 14. Per-layer sensitivity analysis for ResNet56.

intermediate layer [/, the added perturbation increases the
distance between the activation vectors and their ground-
truth cluster centers. Given the pre-computed center Cf*
and PCA matrix P, the distance is measured as

(@) = |- fi(z) = C|".)
For each layer [we define the instability as

sup AT +7) ~(x)

; (10
r#0 il

where Sup denotes supremum and r is the input noise.
For small perturbations, Taylor series can be leveraged to
closely approximate the supremum by

Sup <nVilg) > (11
r£0 I
The upper bound in Eq. (11) is achieved if and only if the
perturbation vector r is aligned with the gradient

V. (gl)

"Il
Substituting this value in Eq. (11), suggests that the instabil-
ity of DNN layers is bounded by the magnitude of the gra-
dient ||V,(g)|. This measure allows for identification of
most sensitive intermediate layers; layers with larger
IV ()| are better suited for MRR placement. We observed
that the last layer shows highest sensitivity towards input
perturbations. Fig. 14 shows an example analysis for
ResNet56 trained on CIFAR-100. We thus place all latent
defenders at the output of the second-to-last layer in our
experiments.

(12)

5 CURTAIL HARDWARE IMPLEMENTATION

Motivation. There is an inherent trade-off between the
computational complexity (e.g., runtime overhead) of the
modular redundancies and the reliability of the system. On
the one hand, a high number of validation checkpoints
increases system reliability, but it also increases the compu-
tational load. On the other hand, a small number of check-
points degrades the defense mechanism performance by
treating adversarial samples as legitimate ones. Let us con-
sider a naive implementation of MRRs on commodity hard-
ware where the checkpoints are executedsequentially.

Fig. 15 demonstrates the pertinent utility and reliability
trade-off under such settings for LeNet model on MNIST
dataset. Here, runtime is normalized to the cost of one for-
ward propagation in the target neural network. As seen, the
runtime in this setting increases linearly with the number of

MNIST Utility

FGS Attack on MNIST

r_ o - victim Model |
o || W 1st Latent Dot
asll & o g ||EE 2nd Latent Def
| £ 1 Input Def
= 5
2 s
= 06
g s’
[
t 0.4 N 3
s K
F | E.
Random Decision o
0.2 -+ Single Checkpoint || 2
== Two Checkpoints 1
= Three Checkpoints
095 0.2 0.4 0.6 0.8 1.0 9

1 2 3
False Positive No. of Checkpoints

Fig. 15. Complexity and reliability trade-off for the LeNet model on
MNIST dataset performed on an NVIDIA Geforce 980 GPU hosted by
an Intel Core-i7 CPU.

checkpoints, which is not desirable. To address this, we
design an FPGA-based accelerator for optimized parallel
execution of CuURTAIL MRRs. In the following, we elaborate
on various components of the CuRTAIL accelerator.

5.1 CuRTAIL Hardware Acceleration

CuRTAIL hardware acceleration stack enables just-in-time
online detection of adversarial samples. Once the MRRs are
trained, CuRTAIL automatically generates the hardware
implementation for the modules by performing two main
phases as illustrated in Fig. 16: (i) offline pre-processing
phase to obtain the MRR configurations, and (ii) online exe-
cution phase in which the legitimacy of each incoming input
data is validated on the fly.

Pre-Processing Phase. This phase consists of one main task,
i.e., resource profiling and design customization. There is a
trade-off between the computational complexity (e.g., run-
time overhead) of the modular redundancies and the overall
system reliability in terms of successful adversarial detection
rate. CuRTAIL uses physical profiling to estimate resource
utilization for the victim model as well as the defender mod-
ules. The output of physical profiling along with a set of user-
defined constraints (e.g., real-time requirements) is then fed
into the design customization unit to determine the viable
number of checkpoints (defenders) as will be discussed in
Section 5.2. The customization unit analyzes this trade-off
between model reliability (robustness), resource limitation,
and throughput to decide the best number of defenders suit-
able to the task and target hardware. This stage is performed
only once and incurs a negligible overhead.

Execution Phase. Once the redundancy modules are cus-
tomized per hardware and user-defined physical constraints,

User-define
Constranits

Pre-Processing Phase
[MRRe }+

Adversarial®
Samples

¥

Provisioning —J'

Physical
Profiling

Offline Step
Online Step

DL Model

i 3
.| Model
; 2]

Sradii >
Legitimate Prediction o
_Latent Defender:

Victim Network Input Defender

Fig. 16. High-level flow of CURTAIL hardware acceleration stack. Based
on the user-provided constraints, CURTAIL outputs the best defense lay-
out that ensures maximum robustness and throughput.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 12,2022 at 20:08:35 UTC from IEEE Xplore. Restrictions apply.

744 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 2, MARCH/APRIL 2021

Latent Defender

memory
|| classicenter ||

class 2 center

[[__classccenter]

Is it adversarial?
weights, biases

Fig. 17. Latent defender structure: the pertinent activations are acquired
by propagating the input sample through the defender. PCA is then
applied to reduce the dimensionality of the obtained activation. The L,
distance with the corresponding GMM center determines the legitimacy
of the input.

the DL model is ready to be deployed for online execution.
CuRTAIL performs three tasks in the execution phase.

©® Forward Propagation. The predicted class for each
incoming sample is acquired through forward prop-
agation in the victim DL model. The predicted out-
put is then fed to defenders for validation.

® Validation. CuRTAIL executes the learned MRRs

(Section 4) on FPGA to validate the legitimacy of the
input data and its associated label. In particular,
samples that do not lie in theuser-defined probability
interval, i.e., SP, are discarded.

® Model Fusion. The output of redundancy modules

are finally aggregated to determine the legitimacy
of the input data and its associated inference label
(Section 4.3).

In the following, we first discuss the hardware architec-
ture of latent and input defenders that enables high through-
put and low energy realization of the recurring execution
phase. We then discuss resource profiling, automated design
customization, and the scalability of CuRTAIL.

5.1.1 Latent Defenders

During the execution phase, each incoming sample is passed
through the latent defender modules that are trained offline
(Section 4.1). The legitimacy of each sample is then deter-
mined by measuring the L, distance with the corresponding
GMM center. The latent defenders can be situated in any
layer of the victim network, therefore, the extracted feature
vector from the DL model can be of high cardinality. High
dimensionality of the GMM centers may cause shortage of
memory as well as increasing the computational cost and
system latency. To mitigate the curse of dimensionality, we
perform Principal Component Analysis (PCA) on the out-
puts of the latent defenders before measuring the L, dis-
tance. For our latent defenders, PCA is performed such that
more than 99 percent of the energy is preserved. Fig. 17 illus-
trates the high-level schematic of a latent defender kernel.
The most computationally-intensive operation in DL
model execution is matrix-matrix multiplication. Recent
FPGAs provide hardeneds of DSP units together with the
re-configurable logic to offer a high computation capacity.
The basic function of a DSP unit is a multiplication and
accumulation (MAC). In order to optimize the design and
make use of the efficient DSP slices, we took a parallelized
approach to convert the DL layer computations into multi-
ple operations running simultaneously as suggested in
[22]. In this setting, DNN layer computations are performed

MNIST

| 1 ~— Seenario 1
FARY —=— Scenario 2

__SVHN_ —
- Scenario 1
—— Scenario 2

Execution Cycles
ol
ﬁ
,/
.-:’
/
B
/
A\
|
P
=]
w -

Ty s 7T s n o B w wa m s

PE per PU

1 3 5 7 9% 11 13 1517 19 A 8B B

PE per PU

Fig. 18. Design space exploration for MNIST and SVHN benchmarks on
Xilinx Zyng-ZC702 FPGA. CuRTAIL finds the optimal configuration of
PEs and PUs to best fit the DL architecture and the available hardware
resources.

within several parallel-working processing units (PUs),
each of which comprises a number of parallel processing
elements (PEs). The parallelism can be controlled by param-
eters Npp and Npy which are static across all layers of the
DL model. In order to achieve maximum throughput, it is
essential to fine-tune the parallelism parameters.

There is a trade-off between the number of parallel
employed Processing Units (Np) and hardware complexity
in terms of memory access. An increase in the number of
parallel computation units will not always result in better
throughput since the dimensionality of the data and divisi-
bility into ready-to-process batches highly affects the effi-
ciency of these parallel units. There are two implementation
scenarios in CuRTAIL; A Processing Unit (PU) can either be
assigned a subset of the layer output features (scenario 1) or
the whole feature map for computation (scenario 2). In the
first scenario, multiple PUs work in parallel to gradually
compute all output features in each DL layer while in the
second scenario, batches of input samples can be processed
simultaneously where the batch size is equal to the number
of PUs. CuRTAIL switches between these two scenarios
based on model architecture, layer dimensionality, and/or
available hardware execution resources. Fig. 18 shows an
example of the design space exploration for the MNIST and
SVHN benchmarks.> Note that based on resource con-
straints, Npy is uniquely determined by the number of Proc-
essing Engines (PE) per PU (the horizontal axis in Fig. 18).

To minimize the latency of latent defenders, we infuse the
PCA kernel inside the defender modules. Collectively, all
transformations from the original input space to the space
spanned by principal components can be shown as a vector-
matrix multiplication ¢, = P, - fj(z) where P, is a matrix
whose rows are eigenvectors obtained from the legitimate
data f;(z). The PCA kernel can thus be replaced with a Dense
layer, appended to the defender’s DL architecture. Note that
the extraction of P, from f;(x) is a one-time offline process.

5.1.2 Input Defender

The input defender module relies on sparse signal recon-
struction to detect anomalies in the victim model’s input
space. Execution of OMP is the main computational bottle-
neck in the input defender. We provide a scalable implemen-
tation of the OMP routine on FPGA to enable low-energy
and in-time analysis of input data. By modifying the OMP
algorithm such that it maximally utilizes the available on-
chip resources, we boost the performance of our OMP core

3. See Section 6 for details of each benchmark.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 12,2022 at 20:08:35 UTC from IEEE Xplore. Restrictions apply.

JAVAHERIPI ET AL.: CURTAIL: CHARACTERIZING AND THWARTING ADVERSARIAL DEEP LEARNING 745

Input Defender

lires||

OMP Kernel |
Residual vec !

(res)

LT |

&3 I

Dictionary Dot product X)
(BRAM) <res, D> =N)

Gram-Schmidt
Orthogonalization

Update
support set

! Sparsity level (k)

Fig. 19. Input defender structure: the OMP core iteratively reconstructs
input vectors using a previously learned dictionary. The reconstruction
error is used to determine input legitimacy.

for large chunks of data. Fig. 19 shows the high-level sche-
matic of an input defender’s kernel. Here, the support set con-
tains columns of the dictionary matrix that are chosen so far
in the routine.

OMP execution includes two computationally expensive
steps, namely the matrix-vector multiplication and the LS
optimization. Each of these steps includes multiple dot prod-
uct computations. The sequential nature of the dot product,
renders the usage of pipelining inefficient. Thereby, we use a
tree-based reduction technique to find the final value by add-
ing up the partial results produced by each of the parallel
processes. Fig. 20 outlines the realization of a tree-based
reduction module. The reduction module takes an array of
size 2M as its input (array a) and oscillates between two dif-
ferent modes. In mode 0, the function reduces a by using
temp as a temporary array. In mode 1, temp is reduced using
a. This interleaving between the two arrays ensures maximal
utilization of memory blocks. The final result is returned
based on the final mode of the system.

Algorithm 2. Incremental QR Decomposition With Mod-
ified Gram-Schmidt

Inputs: New column Dy, Q"!, R"~1.

Output: Q", R".

n—1
1: R" — {R 0

0 0
: forj=1,..,n-1do

Rj, — (@)je"
€N € — RJVIHQ;L—l
LR, = [

Q"= Qn_len/RZn

:|7 6"’ «— DAn

QU W

The LS optimization step is performed using QR decom-
position to reduce implementation complexity and make it
well-suited for hardware accelerators. The Gram-Schmidt
orthogonalization technique gradually forms the orthogonal

a[0]
a[]
a[2]
a[3]

a[2M-3]

a[2M-2]

a[2M-1]
a[2M]

Fig. 20. Tree-based vector reduction algorithm.

Security
Enhancement
- &
- o
2% N FE
% % &£
%, © & O
e 2 & &
% TE
&

Fig. 21. CuRTAIL provides customized defense by balancing the design-
space trade-offs. The goal of CURTAIL is to maximize model robustness
while adhering to the underlying memory and runtime constraints.

matrix) and upper-triangular matrix R to iteratively calcu-
late the decomposition. Algorithm 2 outlines the modified
Gram-Schmidt incremental orthogonalization method [23].

Using the Gram-Schmidt methodology, the residual
update can be considerably simplified by replacing Line 6
of Algorithm 1 with Eq. (13):

e Qi) . (13)

The updated residual vector r at the end of each iteration is
made orthogonal to the selected dictionary samples. As
such, none of the columns of matrix D would be selected
twice during one call of the OMP algorithm. Based on this
observation, we reuse the same set of block memories ini-
tially assigned to the dictionary matrix D to store the newly
computed columns of the () matrix, per iteration [24].

5.2 Automated Design Customization

CuRTAIL provides an automated customization unit that
maximizes DL model robustness while adhering to the limi-
tations dedicated by the underlying hardware platform
and/or application. These limitations include the available
memory, computing resources, and system throughput. Our
automated optimization ensures ease of use and reduces the
non-recurring engineering cost. Fig. 21 depicts the trade-offs
optimized by CuRTAIL customization unit. This unit takes
as input the high-level description of the defenders in Caffe
together with the application-specific runtime constraint and
available hardware resources, e.g., storage and computa-
tional cores. It then outputs the best combination of defender
modules to ensure maximum robustness against adversarial
attacks while adhering to the available resources.

To characterize the design trade-offs, we thoroughly
examine the performance and resource utilization for differ-
ent building blocks of a DL model. For FPGA platforms, the
main resource bottlenecks for DNN implementation are the
Block RAM (BRAM) capacity and the number of DSP units.
The dictionary matrices used in the input defender as well
as the latent defender weights and biases are stored in the
DRAM memory to be accessed during the execution phase.
Upon computation, data is moved from the DRAM to
BRAM which enables faster computation.

CuRTAIL sets the configuration of the defenders with
regard to these two constraints (number of DSP units and
the available BRAM). In particular, CuRTAIL solves the fol-
lowing optimization to find the best configuration for the
number of defenders Ny and the number of processing
units Npy per defender

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 12,2022 at 20:08:35 UTC from IEEE Xplore. Restrictions apply.

746 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 2, MARCH/APRIL 2021

TABLE 1
Runtime and Computational Complexity of Each Custom Layer in CuRTAIL Framework

Runtime | Computational Complexity
Input Defender | OMP Kernel B x patchien (kDgize + k?) O(patchie, D2,)
Conv Layer | B[] X Hin % fin x [f20] x kernel?, | O(Wout Hout fin foutkernel?,)

Latent Defender

Dense Layer 5[1\7:};; 1\?1:;/] O(NinNout)
PCA Layer B[m] O(PL)
Mazimize (DLyopustness) st 5.3 Computational Analysis and Scalability

NpyNaey
Tt < Ty,
Ndef X NpU X DSPPU S Ru7
Npy x [mazx(size(W')) + maz(|X'| + | X)) < M,
(14)

where T, M,, and R, are user-defined constraints for sys-
tem latency, BRAM budget, and available DSP resources,
respectively. Here, size(W') denotes the total number of
parameters and |X'| is the cardinality of the input activa-
tion in layer i. DSPpy indicates the number of DSP slices
used in one processing unit. Variable T7'%" is the maxi-
mum required latency for executing the defender mod-
ules. CuRTAIL considers both sequential and parallel
execution of defenders based on the available resource
provisioning and size of the victim model. Once the opti-
mization is solved for Npy, Npp is uniquely determined
based on available resources.

The OMP unit in CuRTAIL incurs a fixed memory foot-
print and latency for a given application. As such, the opti-
mization of Eq. (14) does not include this constant
overhead. Instead, we exclude this overhead from the user-
defined constraints and use the updated upper bounds. The
memory requirement for an OMP kernel is equivalent to
(patchien x (Dgize +1) + D?.,) x 4 bytes, where patch, is
the total number of pixels within a patch of an input sample
(usually set to 64), and Dy;.. is the number of columns in the
dictionary matrix. The term patchy, x (D + 1) corre-
sponds to the storage space required for the dictionary
matrix as well as the input vector of a data patch. D?_,
stands for the memory space required to store the R matrix
while performing Algorithm 2. Note that the) matrix re-
uses the space originally dedicated to the dictionary to elim-
inate unnecessary use of memory resources. The required
OMP computational time per input patch is superposed by
the computational latency of the latent defenders that are
ran in parallel with the input defender.

Our customization unit is designed such that it maxi-
mizes the resource utilization to ensure maximum through-
put. CuRTAIL performs an exhaustive search over the
parameter Npy and solves the equations in (14) using the
Karush-Kuhn-Tucker (KKT) method to calculate Ny . The
calculated parameters capture the best trade-off between
model robustness and throughput. Our optimization out-
puts the most efficient layout of defender modules as well
as the sequential or parallel realization of defenders. This
constraint-driven optimization is non-recurring and incurs
negligible overhead (10 — 100 msec depending on the hard-
ware platform.).

Table 1 summarizes the computational complexity as well
as the corresponding number of clock-cycles required for
execution of each custom layer in CuRTAIL. In all entries
from the third column of the table, f denotes a system-
dependant constant that characterizes the runtime require-
ment per unit of floating point operation. For an OMP ker-
nel (employed in the input defender), patchy., indicates the
number of elements in an input data patch, Dy;.. is the dic-
tionary size, and k represents the sparsity level (usually set
to 5). Runtime of the Convolution layer is dependent on the
input dimensionality (W;, x H;,), convolution kernel size
(kernelg,), number of input and output filter channels
(fin» fowr), and the values of Npr and Npy acquired from
solving Eq. (14). Same pattern holds for Dense layers where
the input and output dimensions are denoted by N;, and
Noyt. PCA can be cast as a Dense layer as discussed in
Section 5.1.1 with P and L representing the input and out-
put dimensionalities, respectively.

6 EVALUATIONS

We evaluate CuRTAIL on five machine learning datasets:
MNIST, SVHN, CIFAR-10, CIFAR-100, and ImageNet.

MNIST Benchmark. The MNIST data is a 28 x 28 gray-
scale images of handwritten digits with 60,000 train images
and 10,000 test samples. The images are normalized such
that each pixel takes a real value in the range of [0,1]. For
this dataset, we train and use the DL topology proposed
in [26] which is also available in Table 2.

SVHN Benchmark. This dataset consists of 32 x 32 real-
world color images of house numbers in Google Street View
images. We split the data into ~ 60,500 train images and
26,000 test samples. The image pixels are normalized to the
[0,1] range. Table 2 encloses the DL architecture used for
this benchmark in our experiments.

CIFAR Benchmarks. We carry out our experiments on the
two available CIFAR [27] datasets. CIFAR-10 and CIFAR-
100 benchmarks consist of colored (RGB) images with
dimensionality 32 x 32 that are categorized in 10 and 100
classes, respectively. We split the data samples into a set of
50,000 training data and a set of 10,000 test data. The images
are normalized using per-channel mean and standard devi-
ation such that each pixel takes a value in the [0 — 1] range.
In our experiments, we train and use the state-of-the-art DL
topology proposed in [26] for CIFAR-10 and ResNet56-
v2 [25] for CIFAR-100, as enclosed in Table 2.

ImageNet Benchmark. ImageNet is a large database con-
sisting of over 15 million data samples. Typically, a subset
of images belonging to 1000 different categories is used by
the research community for learning evaluation of ImageNet

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 12,2022 at 20:08:35 UTC from IEEE Xplore. Restrictions apply.

JAVAHERIPI ET AL.: CURTAIL: CHARACTERIZING AND THWARTING ADVERSARIAL DEEP LEARNING 747
TABLE 2
Benchmarked DL Models for Evaluating CuRTAIL Effectiveness
[Conv+BN+ReLU | MaxPool [Conv+BN+ReLU [MaxPool | Conv+BN+ReLU | Conv+BN+ReLU [Conv+BN+ReLU | MaxPool | Classifier
. 5x5 2% 2 5x5 2x2 500FC
MNIST 3 stride 1 20 stride 2 20 stride 1 50 stride 2 10FC, softmax
- T000FC
SVHN PRI) el 20 X%, 50 hele 500FC
stride 1 stride 2 stride 1 stride 2 10FC, softmax
~ 2 B3X3 o 2% 2 op _3X3 o1 . 2% 2 05 B3X3 oo 0 X1 oo 0 _1x1 88
CIFAR-10 B 5060 x3 | sy | 96 2o x3 | (i h 192~ 10 102 —7 0 102 192 25510 | verage pool 10FC, softmax
CIFARA00 16 25 16 64 L 64 128 2L 128 s
- 3x3 . 3X3. ., - ., 3X3_ . 3x3 X
(ResNet56-v2 [25]) Tidel 16 - 16 *,] » 16| %6 64 *,1 » 64 | x6 128 ‘,1 » 128 | %6 average pool 100FC, softmax
16 — 64 64 —— 128 128 —— 256
Tix11
3 ——— 96 - P - o . 1024FC
ImageNet stride 4 3x3 256 23, 128 3x3 128 2%, 198 128 3X2, 108 3x3 1024FC
96 5xs | 256 stride 2 stride 1 stride 2 stride 1 stride 1 stride 2 10FC, softmax
stride 1 4

Conv layers are represented as (input — channels) L stride](kernel size)(output — channels) and FC layers are denoted by (output — elements)FC.

data [28]. In our experiments, we train and use a DL architec-
ture inspired by the well-known AlexNet [28] topology for
ImageNet classification. Details about the trained model are
available in Table 2. We down-sample ImageNet classes by a
factor of 100 for execution efficiency purposes. Fig. 22 illus-
trates several samples from each of the selected classes.

6.1 Details of MRR Training

In the following, we enclose the details for training CuR-
TAIL defenders that are evaluated in the experiments.
Note that the MRR training phase is a one-time process
and its cost will be amortized among all future executions
of CuRTAIL.

Training Input Dictionaries.We learn separate input dictio-
naries for each class in the benchmarked dataset. For each
image in the dataset, we randomly sub-sample 30 small
patches and create a new training set. Patch are set to 7 x 7
for MNIST and SVHN, 8 x 8 for CIFAR-10 and CIFAR-100,
and 16 x 16 for ImageNet. We set the number of columns in
each dictionary to 225. Dictionaries are learned following
the description in Section 4.2. Once the dictionaries are
learned, we