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Abstract—Recent advances in adversarial Deep Learning (DL) have opened up a newand largely unexplored surface for malicious

attacks jeopardizing the integrity of autonomousDL systems. This article introduces CuRTAIL, a novel end-to-end computing framework

to characterize and thwart potential adversarial attacks and significantly improve the reliability (safety) of a victimDLmodel.We formalize

the goal of preventing adversarial attacks as an optimization problem tominimize the rarely observed regions in the latent feature space

spanned by a DL network. To solve the aforementionedminimization problem, a set of complementary but disjoint modular redundancies

are trained to validate the legitimacy of the input samples. The proposed countermeasure is unsupervised, meaning that no adversarial

sample is leveraged to trainmodular redundancies. This, in turn, ensures the effectiveness of the defense in the face of generic attacks.

We evaluate the robustness of our proposedmethodology against the state-of-the-art adaptive attacks in a white-box setting considering

that the adversary knows everything about the victimmodel and its defenders. Extensive evaluations for analyzingMNIST, CIFAR10, and

ImageNet data corroborate the effectiveness of CuRTAIL framework against adversarial samples. The computations in eachmodular

redundancy can be performed independently of the other redundancymodules. As such, CuRTAIL detection algorithm can be completely

parallelized amongmultiple hardware settings to achievemaximum throughput.We further provide an open-source Application

Programming Interface (API) to facilitate the adoption of the proposed framework for various applications.

Index Terms—Deep learning, model reliability, adversarial samples, white-box attacks

Ç

1 INTRODUCTION

SECURITY and safety consideration is a major obstacle to the
wide-scale adoption of emerging learning algorithms in

sensitive scenarios, such as intelligent transportation, health-
care, and video surveillance applications [1], [2]. While
advanced learning techniques are essential for enabling
coordination between autonomous agents and the environ-
ment, a careful analysis of their vulnerabilities and their reli-
ability in face of adversarial attacks is still in its infancy.

Adversarial samples [3], [4], [5] are carefully crafted input
instances which lead machine learning algorithms into mis-
classifying while the input changes are imperceptible to the
human eye. For instance, in the case of traffic sign classifiers
employed in self-driving cars, an adversary can add a spe-
cific imperceptible perturbation to a legitimate “stop” sign
sample and fool the DL model to classify it as a “yield” sign,
thus, jeopardizing the safety of the vehicle as shown in [1].
Thereby, it is highly important to identify and reject risky
samples to ensure the integrity of DLmodels used in autono-
mous systems such as unmanned vehicles/drones.

This paper provides an end-to-end solution (called CuR-
TAIL) to characterize and thwart adversarial attacks for
DL models in an online manner. Our proposed solution
addresses three main challenges regarding the adversarial
attacks in the context of deep learning.

(i) Understanding the root cause of DL vulnerabilities to
adversarial samples.Our hypothesis is that the vulnerability
of Deep Neural Networks (DNNs) to adversarial samples
originates from the existence of rarely explored sub-spaces
in each feature map. This phenomenon is particularly
caused by the limited access to labeled data and/or ineffi-
ciency of regularization algorithms [6], [7]. Fig. 1 provides a
simple illustration of the partially explored space in a two-
dimensional setup. We provide statistical analysis and
empirically back up our hypothesis by extensive evalua-
tions on various DL benchmarks and attacks.

(ii) Characterizing and thwarting the adversarial subspace for
model assurance. A line of research has shown that there is a
trade-off between the robustness of a model and its accu-
racy [8], [9]. Taking this into account, instead of making a
single model that is both robust and accurate, we introduce
a new defense mechanism called Modular Robust Redun-
dancy (MRR). In MRR methodology, the victim model is
kept as is while separate defender modules are trained to
checkpoint the hidden features and assess the reliability of
the victim’s prediction. Each defender module characterizes
the explored sub-space in the pertinent layer by learning
the probability density function (PDF) of legitimate data
points and marking the complement sub-spaces as rarely
observed regions. Once such characterization is obtained,
MRRs evaluate the input sample in parallel with the victim
model and raise alarm flags for data points that lie within
the rarely explored regions.

(iii) Just-in-time online defense against adversarial attacks.We
propose CuRTAIL, the first end-to-end hardware-acceler-
ated framework that enables robust and just-in-time defense
against adversarial attacks on DNNs. CuRTAIL is devised
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based on algorithm/hardware co-design to enable safe DL
execution while customizing system performance in terms
of latency, energy consumption, and/or memory footprint
based on the available resource. CuRTAIL leverages FPGAs
to provide fine-grained parallelism and just-in-time response
by our defender modules. The customized data path for
memory access on FPGAhelps to improve the overall system
energy efficiency.

We consider a white-box attack model where the attacker
knows everything about the victim model including its
architecture, learning algorithm, parameters, and defenders.
This threat model represents the most powerful attack that
can endanger real-world applications. We validate the secu-
rity of our proposed approach for different DL benchmarks
including MNIST, SVHN, CIFAR, and a subset of ImageNet
data. The explicit contributions of this paper are as follows:

� Proposing CuRTAIL, the first algorithm/hardware
co-design enabling online defense against adversar-
ial samples for DL models. Our methodology is
unsupervised and robust against the most challeng-
ing attack scenario to date.

� Introducing Modular Robust Redundancy as a viable
countermeasure for adversarial attacks on DL. CuR-
TAIL uses dictionary learning and probability den-
sity functions to statistically detect abnormalities in
the input data.

� Providing quantitative metrics to characterize the
sensitivity of DL layers from a statistical point of
view. Based on the result of our analysis, we provide
new insights on the reason behind the existence of
adversarial transferability.

� Implementing the first streaming-based DL defense
using FPGAs. CuRTAIL devises an automated cus-
tomization tool to adaptively maximize model
robustness against adversaries while complying with
the underlying hardware resource constraints, i.e.,
runtime, energy, andmemory.

� Performing extensive evaluations in both black-box
and adaptive white-box settings against various attack
methodologies including Fast-Gradient-Sign [10],
Jacobian Saliency Map attack [3], Deepfool [4], Basic
IterativeMethod [11], and Carlini&WagnerL2 [5], [12].
Thorough performance comparison on various hard-
ware platforms including CPUs, GPUs, and FPGAs

corroborates CuRTAIL’s algorithmic practicality and
system efficiency.

� Devising an automated accompanying API to facili-
tate adoption/integration of CuRTAIL for reliable
realization of different DL applications by data scien-
tists and engineers.1

An earlier version of CuRTAIL was presented in [13]. In
this article, we extend CuRTAIL framework by: (i) Provid-
ing a thorough statistical analysis to elaborate on the root
cause of DL model vulnerabilities to adversarial attacks
(Section 3). The results of our analysis, in turn, sheds light
on the transferability of adversarial samples in between dif-
ferent models (Section 6.6). (ii) Devising a sensitivity analy-
sis module (Section 4.4). This added module, in turn,
enables careful evaluation of layer-wise vulnerability to
determine the most effective location for checkpointing pur-
poses. (iii) Delineating the hardware architecture of latent
(Section 5.1.1) and input checkpoints (Section 5.1.2). We fur-
ther characterize the computation complexity and latency of
each CuRTAIL’s custom layer in Section 5.3. (iv) Extending
our evaluations on new visual datasets with higher com-
plexity in Section 6.3.

2 BACKGROUND AND PRELIMINARIES

A machine learning model refers to a function f and its
associated parameters u that are specifically trained to
infer/discover the relationship between input samples x 2
fx1; . . . ; xNg and the ground truth labels y 2 fy1; . . . ; yNg.
Each output observation yi can be either continuous as in
most regression tasks or discrete as in classification applica-
tions. Machine learning algorithms typically aim to find the
optimal parameter set u such that a loss function L that cap-
tures the difference between the output inference and
ground-truth labeled data is minimized

u ¼ argmin
u

1

N
S
N

i¼1
Lðfðxi; uÞ; yiÞ: (1)

In this paper, we focus on state-of-the-art deep learning
models due to their popularity in the realization of various
autonomous learning systems. Consistent with the literature
in this field, we specifically focus our discussions on the
classification tasks using DL methodology. However, we
emphasize that our proposed core concept is generic and
can be used for reliable deployment of different learning
techniques such as generalized linear models, regression
methods (e.g., Lasso), and kernel support vector machines.

2.1 Deep Learning

Deep learning is an important class of machine learning
algorithms that has provided a paradigm shift in our ability
to comprehend raw data. A DL network is a hierarchical
learning topology consisting of several processing layers
stacked on top of one another. Each layer extracts features
from its input and feeds it to the succeeding layer. This hier-
archical structure gradually maps the input data samples to
higher-level abstractions. The output from the last layer in
the network is used for classification or regression purposes.

Fig. 1. (a) Data points (green and blue squares) can be easily separated
in one-dimensional space. Extra dimensions add ambiguity in choosing
the decision boundaries: all shown boundaries (dashed lines) result
in the same classification accuracy but are not equally robust to noise.
(b) The rarely explored space in a learning model leaves room for adver-
saries to manipulate the non-critical dimensions (Z2 in this figure) and
mislead the model by crossing the decision boundaries.

1. Implementation at https://github.com/Bitadr/DeepFense
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The most common core processing layers used in DL mod-
els areConvolution andDense layers. A Dense layer performs
matrix-vector multiplication on its input. Convolution
layers take channels of input images, convolve them with a
set of 3-D kernels, and generate a stack of output channels.
The output a linear layer is passed through anActivation
layer which applies a non-linear function to the data, allow-
ing the network to model non-linear and complex patterns.
Pooling layers are implemented to reduce dimensionality as
well as make the model invariant to local translation.

During training, model parameters are automatically
learned in the service of the task. Training a DL network
involves two main steps: (i) forward propagation, and (ii)
backward propagation. In forward propagation, the raw val-
ues of the input data measurements are mapped to higher-
level abstractions based on the current state of the DL param-
eters (u). The acquired data abstractions are used to predict
the inference label in the last layer of the DL network based
on a Softmax regression. In backward propagation, an opti-
mization is performed to update the DL parameter set u such
that the distance between network prediction (output of for-
ward propagation) and the ground-truth label is minimzied.
Once the DL network is fully trained, the model is employed
as a classification oracle in the inference (execution) phase.
During this phase, model parameters are fixed and predic-
tion is performed through one round of forward propagation
for each input sample. Attacks based on adversarial samples
target the DL execution phase and do not involve any tam-
peringwith the training procedure.

2.2 Attack Models

Adversarial machine learning can be cast as a zero-sum
Stackelberg game between the machine learning oracle (vic-
tim) and the attacker. Depending on the attacker’s knowl-
edge, the threat model can be categorized into three classes:

� White-box attacks. The attacker knows everything
about the victim model including the learning algo-
rithm, model topology and parameters, as well as
the defense mechanism, the corresponding defender
parameters.

� Gray-box attacks. The attacker knows the learning
algorithm, model topology, and defense mechanism
and has no access to themodel/defender parameters.

� Black-box attacks. The attacker does not know anything
about the pertinent machine learning algorithm,
ML model, or defense mechanism. This attacker can
merely obtain the outputs of the victim ML model by
providing input samples. In this setting, the adversary
can perform a differential attack by observing the out-
put changeswith respect to input variations.

A complete taxonomy of adversarial capabilities and
goals are provided in [3], [14], [15]. In this paper, we con-
sider the white-box threat model as the most powerful
attacker that can appear in real-world machine learning
applications.

In an adversarial setting, the attacker aims to find a per-
turbed adversarial sample (xa) such that it incurs minimal
distance from the source sample (xs) while its correspond-
ing output is sufficiently different to mislead the victim.
Fig. 2 illustrates an example, where the image on the left is

initially classified correctly as a dog by the victim model
while adding a small amount of perturbation to the original
image has misled the victim to infer it as a black swan (right
image). Clearly, if the source instance is already misclassi-
fied by the victim model (fðxs; uÞ 6¼ y�), the adversarial
problem becomes trivial. Therefore, we particularly focus
on instances xs that could have been classified correctly by
the oracle before adding structured adversarial noises
(fðxs; uÞ ¼ y�).

Several attack mechanisms have been proposed in the lit-
erature to craft adversarial samples. We evaluate CuRTAIL
performance against a variety of attacks to empirically con-
firm the generalizability of out unsupervised MRR method-
ology across a wide range of attacks. In particular, we have
evaluated CuRTAIL against (i) Fast Gradient Sign (FGS) [10],
(ii) Jacobian Saliency Map Attack (JSMA) [3], (iii) Deep-
fool [4], (iv) Basic Iterative Method (BIM) [11], and (v) Carli-
ni&WagnerL2 adaptive attacks [5], [12] . In the following, we
provide a brief explanation of the attack algorithms evalu-
ated in this paper.

Fast-Gradient-Sign. FGS attack [10] crafts an adversarial
sample as x0 ¼ xþ � � Signð@C

@xÞ; where C is the cost function
of the neural network, and Signð�Þ outputs the sign of its
operand. The attack is parameterized by �, which deter-
mines the amount of additive perturbation.

Basic Iterative Method. BIM [11] is an iterative version of
FGS characterized by the number of iterative updates, niters,
and the per-iteration perturbation coefficient, �.

Deepfool. This algorithm iteratively modifies the input
image based on a specific update rule to obtain an adversar-
ial sample [4]. In each iteration, the perturbation vector @C

@x is
normalized and added to the sample. Deepfool is parame-
terized by the number of iterative updates niters.

Carlini&WagnerL2. This attack is formalized as a minimi-
zation problem where the objective is the L2 norm of the
perturbation vector. Carlini&WagnerL22 proposes an itera-
tive method for solving this minimization objective. The
detailed set of parameters for the attack is provided in [5].

3 STATISTICAL ANALYSIS OF ADVERSARIAL

SAMPLES

Let us denote the output of the ith layer of a DL model
given an input sample x by fiðxÞ. One can construct a prob-
abilistic density function PXðfiðxÞÞ for each layer where X
is a random variable drawn from the model input space.
Our conjecture is that adversarial samples cannot lie in
high-probability regions of the PDF function PXð:Þ, which is
learned using the samples drawn from legitimate training

Fig. 2. An example of (a) input data and (b) its corresponding adversarial
sample. The added noise is imperceptible but can cause the victim
model to misclassify.

2. For brevity we denote this attack as CarliniL2 in the paper.
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data. More formally, the expected value of the probability
corresponding to legitimate samples is higher than that of
adversarial samples

EðPXðfiðxsÞÞÞ > > EðPXðfiðxaÞÞÞ; (2)

where Eð�Þ is the expectation and xs and xa are safe and
adversarial input samples, respectively.

This difference between the expected values of the proba-
bility distribution can be leveraged to characterize and
thwart adversarial attacks. To do so, CuRTAIL approxi-
mates the PDF of each layer by training a set of defender
modules, as will be explained in Section 4. Fig. 3 empirically
validates the criterion outlined in Eq. (2). In this example,
the PDF of benign samples in the second-to-last layer
(PXðfN�1ðxÞÞ, where N is the number of model layers) of
the LeNet model is obtained by passing through legitimate
MNIST data points and acquiring the corresponding activa-
tions. Once the PDF is learned, we generate adversarial
samples xa and compute PXðfN�1ðxaÞÞ. Fig. 3 depicts the
probabilistic histogram of legitimate and adversarial sam-
ples based on the learned PDF. As shown, the expected
value of legitimate samples is orders of magnitude greater
than that of adversarial samples.

4 CURTAIL METHODOLOGY

Fig. 4 demonstrates the high-level block diagram of MRR
methodology. In our proposed countermeasure, a number
of modular redundancies (checkpoints) are trained to char-
acterize the data density distribution in the space spanned
by the victim model. The defender modules are then used
in parallel to checkpoint the reliability of the ultimate pre-
diction and raise an alarm flag for risky samples. We refer
to MRR modules that checkpoint the intermediate DL layers
as “latent defenders”. Whereas, the redundancy modules
operating on the input space are referred to as the “input
defenders”. We use the term checkpoints and modular redun-
dancies interchangeably throughout the paper.

4.1 Latent Defenders

The goal of each intermediate defender (checkpointing)
module is to learn the PDF of the explored sub-spaces in a
particular DL feature map. The learned density function is
then used to identify the rarely observed regions. We con-
sider a Gaussian Mixture Model (GMM) as the prior proba-
bility to characterize the data distribution at each checkpoint
location.We emphasize that our proposed approach is rather

generic and is not restricted to the GMM distribution. The
GMM distribution can be replaced with any other prior
depending on the application data.

4.1.1 Training a Single Latent Defender

To effectively characterize the explored sub-space as a
GMM distribution, one is required to minimize the entan-
glement between pairs of Gaussian distribution (corre-
sponding to every two different classes) while decreasing
the inner-class diversity. Fig. 5 illustrates the high-level
block diagram of the training procedure for devising a par-
allel checkpointing module. Training a defender module is
a one-time offline process and is performed in three steps:�1 Replicating the victim neural network and all its fea-
ture maps. An L2 normalization layer is inserted in the
desired checkpoint location. The normalization layer maps
the latent feature variables, fðxÞ, into the euclidean space
such that the acquired data embeddings live in a d-dimen-
sional hyper-sphere, i.e., kfðxÞk2 ¼ 1. This normalization is
crucial as it partially removes the effect of over-fitting to
particular data samples that are highly correlated with the
underlying DL parameters. The L2 norm is selected to be
consistent with our assumption of GMM prior distribution.
This norm can be easily replaced by an arbitrarily user-
defined norm through our accompanying API.�2 Fine-tuning the replicated neural network to enforce
disentanglement of data features (at a particular checkpoint
location) to characterize the PDF of occupied (explored)
subspaces. To do so, we optimize the defender module by
adding the following loss function to the conventional cross
entropy loss

g ½ kCy� � fðxÞk2|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
loss1

� Si6¼y�kCi � fðxÞk2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
loss2

þ SiðkCik � 1Þ2|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
loss3

�:

(3)
Here, g is a trade-off parameter that specifies the contribution
of the additive loss term, fðxÞ is the corresponding feature
vector of input sample x at the checkpoint location, y� is the
ground-truth label, and Ci denotes the center of all data
abstractions (fðxÞ) corresponding to class i. The center values
Ci and intermediate feature vectors fðxÞ are trainable varia-
bles that are learned by fine-tuning the defendermodule.

Fig. 6 illustrates the optimization goal of each defender
module per Eq. (3). The first term (loss1) in Eq. (3) aims to

condense latent data features fðxÞ that belong to the same
class. Reducing the inner-class diversity, in turn, yields a
sharper Gaussian distribution per class. The second term

Fig. 3. Histogram of the estimated PDF for adversarial (red) and legiti-
mate (blue) samples. Adversarial samples are generated using Deepfool
for Lenet architecture. The PDF is learned in the second-to-last layer of
the network.

Fig. 4. High-level block diagram of MRRmethodology. Multiple defenders
checkpoint the input and intermediate activationmaps in parallel. The out-
put of the victim neural network (green neurons) is augmented with a con-
fidencemeasure (red neuron) determining the prediction legitimacy.
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(loss2) intends to increase the intra-class distance between
different categories and promote separability. The composi-
tion of the first two terms in Eq. (3) can be arbitrarily small
by pushing the centers to (Ci  �1). We add the term,
loss3, to ensure that the underlying centers lie on a unit d-
dimensional hyper-sphere and avoid divergence in training
the latent defender modules.

Figs. 7a and 7b demonstrate the distance of legitimate
(blue) and adversarial (red) samples from the correspond-
ing centers Ci in a checkpoint module before and after
retraining. The centers Ci before fine-tuning the checkpoint
(defender) module are equivalent to the mean of the data
points in each class. As shown, fine-tuning the defender
module with proposed objective function can effectively
separate the distribution of legitimate samples from mali-
cious data points. Note that training the latent defender
modules is carried out in an unsupervised setting, meaning
that no adversarial sample is included in the training phase.�3 High dimensional real-world datasets can be repre-
sented as an ensemble of lower dimensional sub-spaces [17],
[18]. As discussed in [17], under a GMM distribution
assumption, data points belonging to each class can be char-
acterized as a spherical density in two sub-spaces: (i) The
sub-space where the data actually lives and (ii) its orthogo-
nal complementary space. We use High Dimensional Dis-
criminant Analysis (HDDA) [17] to learn the mean and
conditional covariance of each class as a composition of
lower dimensional sub-spaces.

The learned PDF variables (i.e., mean and conditional
covariance) are used to compute the probability of a feature
point fðxÞ coming from a specific class. In particular, for each
incoming test sample x, the probability pðfðxÞjyiÞ is evalu-
ated where yi is the predicted class (output of the victim neu-
ral network) and fðxÞ is the corresponding data abstraction
at the checkpoint location. The acquired likelihood is then
compared against a user-defined cut-off threshold which we

refer to as the security parameter. The Security Parameter (SP)
is a constant number in the range of ½0%� 100%� that deter-
mines the hardness of defender modules. Fig. 8 illustrates
how the SP can control the hardness of the pertinent decision
boundaries. In this example, we have depicted the latent
features of one category that are projected into the first two
Principal Component Analysis (PCA) components in the
euclidean space (each point corresponds to a single input
image). The blue and black contours correspond to security
parameters of 10 and 20 percent, respectively. For example,
10 percent of the legitimate training samples lie outside the
contour specifiedwith SP ¼ 10%.

An active adversary can find a structured noise that moves
the data point from one cluster to the center of the other clus-
ters; thus fooling the defender modules (Fig. 11a). The risk of
such attack approach is significantly reduced in our proposed
MRR countermeasure due to three main reasons: (i) Increas-
ing intra-class distances in each checkpointing module;
The latent defender modules are trained such that not only
the inner-class diversity is decreased, but also the distance
between each pair of different classes is increased (see
Eq. (3)). (ii) Use of parallel checkpointing modules as
explained in Section 4.1.2; the attacker requires to simulta-
neously deceive all the defender models in order to succeed.
(iii) Learning a separate defender module in the input space
to validate the Peak Signal-to-Noise Ratio (PSNR) level of the
incoming samples as discussed in Section 4.2.

4.1.2 Training Multiple Latent Defenders

In this section, we explain our methodology for creating
multiple defender modules that are negatively correlated.

Fig. 5. Block diagram of the training procedure for devising parallel redundancy modules. Each latent defender is built by minimizing the entangle-
ment of intermediate data features in a Euclidean space at a particular checkpoint location. This goal is achieved through several rounds of iterative
realignment of data abstractions. The latent data space is then characterized as an ensemble of lower dimensional sub-spaces to effectively learn
the PDF of explored regions and detect atypical samples based on a user-defined security parameter.

Fig. 6. Defender module optimization objective.

Fig. 7. (a) Distance of legitimate (blue) and adversarial (red) samples
from the corresponding centers Ci before and (b) after realignment of
data samples. In this example, we consider the LeNetmodel [16] trained
on MNIST. The checkpoint is inserted in the second-to-last layer and
adversarial samples are generated by FGS attack.
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Specifically, two MRRs are negatively correlated if deceiv-
ing one of them raises a high suspicion in the other one and
vice versa. Consider the ith MRR that maps a legitimate
input x to feature vector fiðxÞ, where fiðxÞ is close (in terms
of euclidean distance) to the ground-truth cluster center
Cy�

i . An adversary trying to mislead this defender would
generate a perturbed input xþ h such that fiðxþ hÞ is far
from Cy�

i . Negative correlation means that for the subse-
quent MRR with feature vector fiþ1ðxÞ, adding the perturba-
tion hwill bring fiþ1ðxþ hÞ closer to its ground-truth cluster
center Cy�

iþ1. Fig. 9 shows this effect where the colored cloud
represents the data points in each MRRs latent feature map
and the decision boundary specified by the security param-
eter (SP) is shown with the oval contour.

To mitigate such adaptive attacks, we propose to train a
Markov chain of detector modules as illustrated in Fig. 10.
To build this chain of MRRs, we first train a single
defender module as described in Section 4.1. Next, we gen-
erate a new set of training data from samples that are
deemed adversarial for the previous defender module. In
particular, the nth defender of this chain takes an input
data x, generates a perturbation h, and feeds clipðxþ hÞ to
the ðnþ 1Þth defender. The perturbation h is chosen as h ¼
@L1
@x , where L1 is the loss1 term in Eq. (3) corresponding to
the nth defender. Given these new perturbed samples,
data points that deviate from the centers in the nth
defender will be close to the corresponding center in the
ðnþ 1Þth defender. As such, deceiving all the defenders
requires a larger perturbation.

4.2 Input Defender

We leverage dictionary learning and sparse signal recovery
techniques to measure the PSNR of each incoming sample
and automatically filter out atypical samples in the input
space. Fig. 11b illustrates the block diagram of an input
defender module. An input checkpoint is configured in two
main steps: (i) dictionary learning, and (ii) characterizing
the typical PSNR per class after sparse recovery.�1 Dictionary learning; we learn a separate dictionary for
each class of data by solving

argmin
Di

1

2
kZi �DiV ik2 þ bkV ik1

s:t: kDi
kk ¼ 1; 0 � k � Kmax:

(4)

Here, Zi is a matrix whose columns are pixels extracted from
different regions of input images belonging to category i. For
instance, if we consider 8	 8 patches of pixels, each column
of Zi would be a vector of 64 elements. The goal of dictionary
learning is to findmatrixDi that best represents the distribu-
tion of pixel patches from images belonging to class i. We
denote the number of columns in Di by kmax. For a certain
Di, the image patches Zi are represented with a sparse
matrix V i, and DiV i is the reconstructed patches. We lever-
age Least Angle Regression (LAR) method [19] to solve the
Lasso problem defined in Eq. (4).

During the execution phase, the input defender takes the
output of the victim DL model (e.g., predicted class i) and
uses Orthogonal Matching Pursuit (OMP) routine [20] to
sparsely reconstruct the input data with the corresponding
dictionaryDi. The reconstructed image is formed by denois-
ing all of the non-overlapping patches within the image by
the corresponding class dictionary. Algorithm 1 outlines the
pseudo code of the OMP routine. As shown, Performing
OMP requires iterative execution of three main steps:
(i) finding the best matching sample in the dictionary matrix
D (Line 4 of Algorithm 1), (ii) least-square (LS) optimization
(Line 5 of Algorithm 1), and (iii) residual update (Line 6 of
Algorithm 1). In the provided pseudo code Dcol represents
the colth column of the dictionary matrix D, and DL is the
subset ofD columns that have been chosen so far in the rou-
tine. The OMP algorithm terminates when the number of
non-zero elements in the output coefficient vector (V �) is
more than the sparsity level k.�2 Characterizing typical PSNR in each category as
defined in Eq. (5); a benign sample belonging to class i
should be well-reconstructed as DiV � with a high PSNR
value, where V � is the optimal solution obtained by the
OMP routine. We profile the PSNR percentile of legitimate
samples within each class and find the corresponding
threshold that satisfies the user-defined security parameter.
If an incoming sample has a PSNR lower than the threshold

Fig. 9. Enforcing negative correlation between MRRs.

Fig. 10. Training multiple negatively correlated defenders at each check-
point layer of the DL model.

Fig. 11. An input defender module is devised based on robust dictionary
learning techniques to automatically filter out test samples that highly
deviate from the typical PSNR of data points within the corresponding
predicted class.

Fig. 8. Illustration of the effect of security parameter on the detection pol-
icy. A high SP leads to a tight boundary which treats most samples as
adversarial examples.
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(i.e., high perturbation after reconstruction by the corre-
sponding dictionary), it will be regarded as a malicious data
point

PSNR ¼ 20 log10ðMAXIÞ � 10 log10ðMSEÞ; (5)

where the mean square error (MSE) is defined as the L2 dif-
ference of the input image and the reconstructed image
based on the corresponding dictionary, i.e., krkk. TheMAXI

is the maximum possible pixel value of the image (e.g., 255).
Note that since the decision of the defender solely depends
on the norm of the residual vector, krkk, there is no need to
explicitly compute the sparse vector V �.

Algorithm 1. OMP Algorithm

Inputs: DictionaryD, input sample V , maximum sparsity level k.
Output: Coefficient vector V �.
1: r0  X
2: L0  ;
3: for i = 1,...,k do
4: Li  Li�1 [ argmaxcolj < ri�1; Dcol > j
5: V i  argminV kri�1 �DLi V k
6: ri  ri�1 �DLiV i

Fig. 12 demonstrates the impact of perturbation level on
the pertinent adversarial detection rate for three different
security parameters (cut-off thresholds). In this experiment,
we have considered the FGS attack with different � values on
LeNetMNIST benchmark. Table 2 summarizes the DLmodel
topology used in each benchmark. The latent defender mod-
ule (checkpoint) is inserted at the second-to-last layers. As
shown, the use of input dictionaries facilitate detection of
adversarial samples with relatively high perturbation (e.g.,
� > 0:25) while the latent defender effectively distinguishes
malicious samples with very small perturbations. We exten-
sively evaluate the impact of security parameter on system
performance for various benchmarks in Section 6.

4.3 Model Fusion

Fig. 13 depicts the configuration of the defender modules in
the execution phase. Each defender module gets the input
sample x and generates a binary output dk 2 f0; 1g with
value 1 denoting an adversarial sample. Each defender
makes the binary decision based on the security parameter
(SP) discussed in Section 4.1. To aggregate the binary ran-
dom variables fd1; . . .; dNg into a single decision a, we com-
pute the probability of the input being adversarial as follows:

P ða ¼ 1jfd1; d2; . . . ; dngÞ ¼ 1�
YN
n¼1
ð1� PnÞdn ;

Pn ¼ P ða ¼ 1jdn ¼ 1Þ:
(6)

This formulation resembles the well-known noisy-OR termi-
nology used in statistical learning [21]. In MRR methodol-
ogy, each defender has a parameter Pn which indicates the
likelihood of a sample being adversarial given that the nth
defender has labeled it as a malicious sample. If all detectors
have a parameter of Pn ¼ 1, then the formulation in Eq. (6) is
equivalent to the logical OR between fd1; . . . ; dNg.

Inserting Pn into the noisy-OR operation enables learning
different weights for different defender modules to improve
adversarial detection rate without increasing false alarms.
In practice, the Pn parameters are estimated by evaluating
the performance of each individual defender. For this pur-
pose, we use a subset of the training data and create adver-
sarial samples. In particular, for each legitimate sample x,
we generate xa ¼ xþ � � rxðLÞ where L is the victim mod-
el’s cross-entropy loss. We next use the generated samples
to obtain Pn. By using this generic form of adversary, we
ensure that the calculated Pn is attack-agnostic and works
well with different adversaries. The probability Pn is esti-
mated as

Pn ¼ STrue

SFalse þ STrue
; (7)

where STrue is the number of adversarial samples that are
correctly detected by defender n and SFalse denotes the
number of legitimate samples that were mistaken for adver-
saries.In our experiments, we raise alarm flags for samples
with P ða ¼ 1jfd1; d2; . . . ; dngÞ 
 0:5.

4.4 Sensitivity Analysis

The effectiveness of adversarial perturbations on DNN clas-
sification can be quantified by their induced variations on
intermediate activations. To study this effect, we extract the
cluster centers corresponding to each hidden layer using a
subset of the (benign) training data. Let Xy� denote the set
of samples with label y�. The corresponding cluster center
Cy�

l at layer l is calculated as

Cy�
l ¼ Ex�Xy� ½Pl � flðxÞ�; (8)

where flðxÞ is the layer activations. To reduce dimensional-
ity, we perform PCA (Pl operator in Eq. (8)) on the activa-
tion vectors such that more than 99 percent of the energy is
preserved.

The perturbation signal in adversarial samples can be
modeled as an additive noise to the input data. At each

Fig. 12. Adversarial detection rate of input and latent defenders as a
function of the perturbation level for various SP . Here, FGS is used to
generate adversarial samples and the perturbation is adjusted by chang-
ing attack parameter �.

Fig. 13. CuRTAIL uses a score-based statistical method to aggregate the
decision of all MRRs.
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intermediate layer l, the added perturbation increases the
distance between the activation vectors and their ground-
truth cluster centers. Given the pre-computed center Cy�

l

and PCAmatrix Pl, the distance is measured as

glðxÞ ¼ kPl � flðxÞ � Cy�k2: (9)

For each layer lwe define the instability as

Sup
r6¼0

glðxþ rÞ � glðxÞ
krk ; (10)

where Sup denotes supremum and r is the input noise.
For small perturbations, Taylor series can be leveraged to

closely approximate the supremum by

Sup
r6¼0

< r;rxðglÞ >
krk : (11)

The upper bound in Eq. (11) is achieved if and only if the
perturbation vector r is aligned with the gradient

r ¼ krk rxðglÞ
krxðglÞk : (12)

Substituting this value in Eq. (11), suggests that the instabil-
ity of DNN layers is bounded by the magnitude of the gra-
dient krxðglÞk. This measure allows for identification of
most sensitive intermediate layers; layers with larger
krxðglÞk are better suited for MRR placement. We observed
that the last layer shows highest sensitivity towards input
perturbations. Fig. 14 shows an example analysis for
ResNet56 trained on CIFAR-100. We thus place all latent
defenders at the output of the second-to-last layer in our
experiments.

5 CURTAIL HARDWARE IMPLEMENTATION

Motivation. There is an inherent trade-off between the
computational complexity (e.g., runtime overhead) of the
modular redundancies and the reliability of the system. On
the one hand, a high number of validation checkpoints
increases system reliability, but it also increases the compu-
tational load. On the other hand, a small number of check-
points degrades the defense mechanism performance by
treating adversarial samples as legitimate ones. Let us con-
sider a naı̈ve implementation of MRRs on commodity hard-
ware where the checkpoints are executedsequentially.

Fig. 15 demonstrates the pertinent utility and reliability
trade-off under such settings for LeNet model on MNIST
dataset. Here, runtime is normalized to the cost of one for-
ward propagation in the target neural network. As seen, the
runtime in this setting increases linearly with the number of

checkpoints, which is not desirable. To address this, we
design an FPGA-based accelerator for optimized parallel
execution of CuRTAIL MRRs. In the following, we elaborate
on various components of the CuRTAIL accelerator.

5.1 CuRTAIL Hardware Acceleration

CuRTAIL hardware acceleration stack enables just-in-time
online detection of adversarial samples. Once the MRRs are
trained, CuRTAIL automatically generates the hardware
implementation for the modules by performing two main
phases as illustrated in Fig. 16: (i) offline pre-processing
phase to obtain the MRR configurations, and (ii) online exe-
cution phase in which the legitimacy of each incoming input
data is validated on the fly.

Pre-Processing Phase. This phase consists of one main task,
i.e., resource profiling and design customization. There is a
trade-off between the computational complexity (e.g., run-
time overhead) of the modular redundancies and the overall
system reliability in terms of successful adversarial detection
rate. CuRTAIL uses physical profiling to estimate resource
utilization for the victim model as well as the defender mod-
ules. The output of physical profiling alongwith a set of user-
defined constraints (e.g., real-time requirements) is then fed
into the design customization unit to determine the viable
number of checkpoints (defenders) as will be discussed in
Section 5.2. The customization unit analyzes this trade-off
between model reliability (robustness), resource limitation,
and throughput to decide the best number of defenders suit-
able to the task and target hardware. This stage is performed
only once and incurs a negligible overhead.

Execution Phase. Once the redundancy modules are cus-
tomized per hardware and user-defined physical constraints,

Fig. 14. Per-layer sensitivity analysis for ResNet56.

Fig. 15. Complexity and reliability trade-off for the LeNet model on
MNIST dataset performed on an NVIDIA Geforce 980 GPU hosted by
an Intel Core-i7 CPU.

Fig. 16. High-level flow of CuRTAIL hardware acceleration stack. Based
on the user-provided constraints, CuRTAIL outputs the best defense lay-
out that ensures maximum robustness and throughput.
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the DL model is ready to be deployed for online execution.
CuRTAIL performs three tasks in the execution phase.

�1 Forward Propagation. The predicted class for each
incoming sample is acquired through forward prop-
agation in the victim DL model. The predicted out-
put is then fed to defenders for validation.�2 Validation. CuRTAIL executes the learned MRRs
(Section 4) on FPGA to validate the legitimacy of the
input data and its associated label. In particular,
samples that do not lie in theuser-defined probability
interval, i.e., SP, are discarded.�3 Model Fusion. The output of redundancy modules
are finally aggregated to determine the legitimacy
of the input data and its associated inference label
(Section 4.3).

In the following, we first discuss the hardware architec-
ture of latent and input defenders that enables high through-
put and low energy realization of the recurring execution
phase. We then discuss resource profiling, automated design
customization, and the scalability of CuRTAIL.

5.1.1 Latent Defenders

During the execution phase, each incoming sample is passed
through the latent defender modules that are trained offline
(Section 4.1). The legitimacy of each sample is then deter-
mined by measuring the L2 distance with the corresponding
GMM center. The latent defenders can be situated in any
layer of the victim network, therefore, the extracted feature
vector from the DL model can be of high cardinality. High
dimensionality of the GMM centers may cause shortage of
memory as well as increasing the computational cost and
system latency. To mitigate the curse of dimensionality, we
perform Principal Component Analysis (PCA) on the out-
puts of the latent defenders before measuring the L2 dis-
tance. For our latent defenders, PCA is performed such that
more than 99 percent of the energy is preserved. Fig. 17 illus-
trates the high-level schematic of a latent defender kernel.

The most computationally-intensive operation in DL
model execution is matrix-matrix multiplication. Recent
FPGAs provide hardeneds of DSP units together with the
re-configurable logic to offer a high computation capacity.
The basic function of a DSP unit is a multiplication and
accumulation (MAC). In order to optimize the design and
make use of the efficient DSP slices, we took a parallelized
approach to convert the DL layer computations into multi-
ple operations running simultaneously as suggested in
[22]. In this setting, DNN layer computations are performed

within several parallel-working processing units (PUs),
each of which comprises a number of parallel processing
elements (PEs). The parallelism can be controlled by param-
eters NPE and NPU which are static across all layers of the
DL model. In order to achieve maximum throughput, it is
essential to fine-tune the parallelism parameters.

There is a trade-off between the number of parallel
employed Processing Units (NPU ) and hardware complexity
in terms of memory access. An increase in the number of
parallel computation units will not always result in better
throughput since the dimensionality of the data and divisi-
bility into ready-to-process batches highly affects the effi-
ciency of these parallel units. There are two implementation
scenarios in CuRTAIL; A Processing Unit (PU) can either be
assigned a subset of the layer output features (scenario 1) or
the whole feature map for computation (scenario 2). In the
first scenario, multiple PUs work in parallel to gradually
compute all output features in each DL layer while in the
second scenario, batches of input samples can be processed
simultaneously where the batch size is equal to the number
of PUs. CuRTAIL switches between these two scenarios
based on model architecture, layer dimensionality, and/or
available hardware execution resources. Fig. 18 shows an
example of the design space exploration for the MNIST and
SVHN benchmarks.3 Note that based on resource con-
straints,NPU is uniquely determined by the number of Proc-
essing Engines (PE) per PU (the horizontal axis in Fig. 18).

To minimize the latency of latent defenders, we infuse the
PCA kernel inside the defender modules. Collectively, all
transformations from the original input space to the space
spanned by principal components can be shown as a vector-
matrix multiplication tl ¼ Pl � flðxÞ where Pl is a matrix
whose rows are eigenvectors obtained from the legitimate
data flðxÞ. The PCA kernel can thus be replaced with aDense
layer, appended to the defender’s DL architecture. Note that
the extraction of Pl from flðxÞ is a one-time offline process.

5.1.2 Input Defender

The input defender module relies on sparse signal recon-
struction to detect anomalies in the victim model’s input
space. Execution of OMP is the main computational bottle-
neck in the input defender.We provide a scalable implemen-
tation of the OMP routine on FPGA to enable low-energy
and in-time analysis of input data. By modifying the OMP
algorithm such that it maximally utilizes the available on-
chip resources, we boost the performance of our OMP core

Fig. 17. Latent defender structure: the pertinent activations are acquired
by propagating the input sample through the defender. PCA is then
applied to reduce the dimensionality of the obtained activation. The L2

distance with the corresponding GMM center determines the legitimacy
of the input.

Fig. 18. Design space exploration for MNIST and SVHN benchmarks on
Xilinx Zynq-ZC702 FPGA. CuRTAIL finds the optimal configuration of
PEs and PUs to best fit the DL architecture and the available hardware
resources.

3. See Section 6 for details of each benchmark.
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for large chunks of data. Fig. 19 shows the high-level sche-
matic of an input defender’s kernel. Here, the support set con-
tains columns of the dictionary matrix that are chosen so far
in the routine.

OMP execution includes two computationally expensive
steps, namely the matrix-vector multiplication and the LS
optimization. Each of these steps includesmultiple dot prod-
uct computations. The sequential nature of the dot product,
renders the usage of pipelining inefficient. Thereby, we use a
tree-based reduction technique to find the final value by add-
ing up the partial results produced by each of the parallel
processes. Fig. 20 outlines the realization of a tree-based
reduction module. The reduction module takes an array of
size 2M as its input (array a) and oscillates between two dif-
ferent modes. In mode 0, the function reduces a by using
temp as a temporary array. In mode 1, temp is reduced using
a. This interleaving between the two arrays ensures maximal
utilization of memory blocks. The final result is returned
based on the final mode of the system.

Algorithm 2. Incremental QR Decomposition With Mod-
ified Gram-Schmidt

Inputs:New columnDLn , Qn�1, Rn�1.
Output: Qn, Rn.

1: Rn  Rn�1 0
0 0

� �
; �n  DLn

2: for j = 1,...,n-1 do
3: Rn

jn  ðQn�1ÞTj �n
4: �n  �n �Rn

jnQ
n�1
j

5: Rn
nn ¼ k�nk

6: Qn ¼ Qn�1�n=Rn
nn

The LS optimization step is performed using QR decom-
position to reduce implementation complexity and make it
well-suited for hardware accelerators. The Gram-Schmidt
orthogonalization technique gradually forms the orthogonal

matrix Q and upper-triangular matrix R to iteratively calcu-
late the decomposition. Algorithm 2 outlines the modified
Gram-Schmidt incremental orthogonalization method [23].

Using the Gram-Schmidt methodology, the residual
update can be considerably simplified by replacing Line 6
of Algorithm 1 with Eq. (13):

ri  ri�1 �QiðQiÞT ri�1: (13)

The updated residual vector r at the end of each iteration is
made orthogonal to the selected dictionary samples. As
such, none of the columns of matrix D would be selected
twice during one call of the OMP algorithm. Based on this
observation, we reuse the same set of block memories ini-
tially assigned to the dictionary matrix D to store the newly
computed columns of the Qmatrix, per iteration [24].

5.2 Automated Design Customization

CuRTAIL provides an automated customization unit that
maximizes DL model robustness while adhering to the limi-
tations dedicated by the underlying hardware platform
and/or application. These limitations include the available
memory, computing resources, and system throughput. Our
automated optimization ensures ease of use and reduces the
non-recurring engineering cost. Fig. 21 depicts the trade-offs
optimized by CuRTAIL customization unit. This unit takes
as input the high-level description of the defenders in Caffe
togetherwith the application-specific runtime constraint and
available hardware resources, e.g., storage and computa-
tional cores. It then outputs the best combination of defender
modules to ensure maximum robustness against adversarial
attacks while adhering to the available resources.

To characterize the design trade-offs, we thoroughly
examine the performance and resource utilization for differ-
ent building blocks of a DL model. For FPGA platforms, the
main resource bottlenecks for DNN implementation are the
Block RAM (BRAM) capacity and the number of DSP units.
The dictionary matrices used in the input defender as well
as the latent defender weights and biases are stored in the
DRAM memory to be accessed during the execution phase.
Upon computation, data is moved from the DRAM to
BRAMwhich enables faster computation.

CuRTAIL sets the configuration of the defenders with
regard to these two constraints (number of DSP units and
the available BRAM). In particular, CuRTAIL solves the fol-
lowing optimization to find the best configuration for the
number of defenders Ndef and the number of processing
units NPU per defender

Fig. 19. Input defender structure: the OMP core iteratively reconstructs
input vectors using a previously learned dictionary. The reconstruction
error is used to determine input legitimacy.

Fig. 20. Tree-based vector reduction algorithm.

Fig. 21. CuRTAIL provides customized defense by balancing the design-
space trade-offs. The goal of CuRTAIL is to maximize model robustness
while adhering to the underlying memory and runtime constraints.
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Maximize
NPU ;Ndef

ðDLrobustnessÞ s:t: :

Tmax
def � Tu;

Ndef 	NPU 	DSPPU � Ru;

NPU 	 ½maxðsizeðWiÞÞ þmaxðjXij þ jXiþ1jÞ� �Mu;

(14)

where Tu, Mu, and Ru are user-defined constraints for sys-
tem latency, BRAM budget, and available DSP resources,
respectively. Here, sizeðWiÞ denotes the total number of
parameters and jXij is the cardinality of the input activa-
tion in layer i. DSPPU indicates the number of DSP slices
used in one processing unit. Variable Tmax

def is the maxi-
mum required latency for executing the defender mod-
ules. CuRTAIL considers both sequential and parallel
execution of defenders based on the available resource
provisioning and size of the victim model. Once the opti-
mization is solved for NPU , NPE is uniquely determined
based on available resources.

The OMP unit in CuRTAIL incurs a fixed memory foot-
print and latency for a given application. As such, the opti-
mization of Eq. (14) does not include this constant
overhead. Instead, we exclude this overhead from the user-
defined constraints and use the updated upper bounds. The
memory requirement for an OMP kernel is equivalent to
ðpatchlen 	 ðDsize þ 1Þ þD2

sizeÞ 	 4 bytes, where patchlen is
the total number of pixels within a patch of an input sample
(usually set to 64), andDsize is the number of columns in the
dictionary matrix. The term patchlen 	 ðDsize þ 1Þ corre-
sponds to the storage space required for the dictionary
matrix as well as the input vector of a data patch. D2

size

stands for the memory space required to store the R matrix
while performing Algorithm 2. Note that the Q matrix re-
uses the space originally dedicated to the dictionary to elim-
inate unnecessary use of memory resources. The required
OMP computational time per input patch is superposed by
the computational latency of the latent defenders that are
ran in parallel with the input defender.

Our customization unit is designed such that it maxi-
mizes the resource utilization to ensure maximum through-
put. CuRTAIL performs an exhaustive search over the
parameter NPU and solves the equations in (14) using the
Karush-Kuhn-Tucker (KKT) method to calculate Ndef . The
calculated parameters capture the best trade-off between
model robustness and throughput. Our optimization out-
puts the most efficient layout of defender modules as well
as the sequential or parallel realization of defenders. This
constraint-driven optimization is non-recurring and incurs
negligible overhead (10� 100 msec depending on the hard-
ware platform.).

5.3 Computational Analysis and Scalability

Table 1 summarizes the computational complexity as well
as the corresponding number of clock-cycles required for
execution of each custom layer in CuRTAIL. In all entries
from the third column of the table, b denotes a system-
dependant constant that characterizes the runtime require-
ment per unit of floating point operation. For an OMP ker-
nel (employed in the input defender), patchlen indicates the
number of elements in an input data patch, Dsize is the dic-
tionary size, and k represents the sparsity level (usually set
to 5). Runtime of the Convolution layer is dependent on the
input dimensionality (Win 	Hin), convolution kernel size
(kernelsize), number of input and output filter channels
(fin; fout), and the values of NPE and NPU acquired from
solving Eq. (14). Same pattern holds for Dense layers where
the input and output dimensions are denoted by Nin and
Nout. PCA can be cast as a Dense layer as discussed in
Section 5.1.1 with P and L representing the input and out-
put dimensionalities, respectively.

6 EVALUATIONS

We evaluate CuRTAIL on five machine learning datasets:
MNIST, SVHN, CIFAR-10, CIFAR-100, and ImageNet.

MNIST Benchmark. The MNIST data is a 28	 28 gray-
scale images of handwritten digits with 60,000 train images
and 10,000 test samples. The images are normalized such
that each pixel takes a real value in the range of [0,1]. For
this dataset, we train and use the DL topology proposed
in [26] which is also available in Table 2.

SVHN Benchmark. This dataset consists of 32	 32 real-
world color images of house numbers in Google Street View
images. We split the data into � 60; 500 train images and
26,000 test samples. The image pixels are normalized to the
[0,1] range. Table 2 encloses the DL architecture used for
this benchmark in our experiments.

CIFAR Benchmarks. We carry out our experiments on the
two available CIFAR [27] datasets. CIFAR-10 and CIFAR-
100 benchmarks consist of colored (RGB) images with
dimensionality 32	 32 that are categorized in 10 and 100
classes, respectively. We split the data samples into a set of
50,000 training data and a set of 10,000 test data. The images
are normalized using per-channel mean and standard devi-
ation such that each pixel takes a value in the ½0� 1� range.
In our experiments, we train and use the state-of-the-art DL
topology proposed in [26] for CIFAR-10 and ResNet56-
v2 [25] for CIFAR-100, as enclosed in Table 2.

ImageNet Benchmark. ImageNet is a large database con-
sisting of over 15 million data samples. Typically, a subset
of images belonging to 1000 different categories is used by
the research community for learning evaluation of ImageNet

TABLE 1
Runtime and Computational Complexity of Each Custom Layer in CuRTAIL Framework
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data [28]. In our experiments, we train and use a DL architec-
ture inspired by the well-known AlexNet [28] topology for
ImageNet classification. Details about the trained model are
available in Table 2. We down-sample ImageNet classes by a
factor of 100 for execution efficiency purposes. Fig. 22 illus-
trates several samples from each of the selected classes.

6.1 Details of MRR Training

In the following, we enclose the details for training CuR-
TAIL defenders that are evaluated in the experiments.
Note that the MRR training phase is a one-time process
and its cost will be amortized among all future executions
of CuRTAIL.

Training Input Dictionaries.We learn separate input dictio-
naries for each class in the benchmarked dataset. For each
image in the dataset, we randomly sub-sample 30 small
patches and create a new training set. Patch are set to 7	 7
for MNIST and SVHN, 8	 8 for CIFAR-10 and CIFAR-100,
and 16	 16 for ImageNet. We set the number of columns in
each dictionary to 225. Dictionaries are learned following
the description in Section 4.2. Once the dictionaries are
learned, we execute OMP (Algorithm 1) to denoise input
samples. The PSNRs are then computed as in Eq. (5), and
compared against a cut-off threshold to raise alarms for
high distortion values. We set the cut-off threshold value of
input defender such that all the training data are considered
legitimate samples.

Training Latent Defenders.For each application, we train
a maximum of 16 latent defenders all of which checkpoint
the second-to-last layer of the victim model. For ImageNet
benchmark we only used 1 defender due to the high
computational complexity of the pertinent neural network
and attacks. We initialize the weights of latent defenders
using those of the victim model, then retrain them by add-
ing the extra term to the loss function with parameter g set
to 0.01 for all applications (see Eq. (3)). Each defender
module is trained for the same number of epochs as the
original training of the victim model with the same opti-
mizer. The learning rate is set to 1

10 of that of the victim
model as the model is already in a relatively good local
minimum.

6.2 Attack Analysis and Resiliency

We leverage a wide range of attack methodologies (namely,
FGS [10], BIM [11], CarliniL2 [5], and Deepfool [4]) with
varying parameters to ensure CuRTAIL’s generalizability.
The perturbation levels are selected such that the adversar-
ial noise is undetectable by a human observer (Table 3 sum-
marizes the pertinent attack parameters). We evaluate our
defense mechanism in two attack scenarios:

� The attacker has complete access to the parameters
and the architecture of the victim model but is not
aware of the defense mechanism (a.k.a., black-box
attack).

� The attacker has complete access to the parameters
and the architecture of the victim model as well as
the defender modules (a.k.a., adaptive white-box
attack).

To characterize the performance of the proposed defense
methodology against adversarial attacks, we evaluate CuR-
TAIL in terms of both the True Positive (TP) and False Posi-
tive (FP) detection rates. In this context, TP refers to the
ratio of adversarial samples correctly detected by the system
while FP denotes the ratio of legitimate samples that are
mistakenly categorized as being malicious. There is an
inherent trade-off between the TP and FP detection rates
that can be controlled using the security parameter dis-
cussed in Section 4. The Area Under Curve (AUC) for a TP
versus FP plot fully encapsulates this trade-off and can be
used as a measure to quantify the quality of adversarial
detection. A random decision has an AUC of 0.5 while an
ideal detector will have an AUC of 1.

TABLE 2
Benchmarked DL Models for Evaluating CuRTAIL Effectiveness

Conv layers are represented as hinput� channelsi ½!stride�hkernel sizeihoutput� channelsi and FC layers are denoted by houtput� elementsiFC.

Fig. 22. Example legitimate samples in ImageNet benchmark. Samples
are randomly selected from the target classes.

TABLE 3
Attack Parameters

Attack Attack Parameters

FGS � 2 f0:01a; 0:05a; 0:1m;c; 0:2mg
Deepfool niters 2 f2a; 5a; 10a; 20a; 50a; 100ag
BIM � 2 f0:001a; 0:002ag; niters 2 f5a; 10a; 20a; 50m; 100mg
CarliniL2 C 2 f0a; 10a; 20s;c; 30s;c; 40s;c; 50c; 60c; 70cg

LR = 0:1a, steps = 10a, iterations = 500a

For CarliniL2 attack [5], “C” denotes the confidence, “LR” is the learning rate,
“steps” is the number of binary search steps, and “iterations” stands for the
maximum number of iterations. Superscripts (m! MNIST, s! SVHN,
c! CIFAR, a! all) are used to indicate the benchmarks for which the
parameters are used.
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6.3 Black-Box Attacks

In our first analysis, we study the relationship between
detection success and the security parameter. We present
the transition of the FP and TP rates with SP in Fig. 23. In
this experiment, we use the test data to generate a dataset of
adversarial samples using all attack algorithms/parameters
of Table 3; we then evaluate the performance of our MRRs
against these diverse adversarial samples to obtain the TP
curve (shown in orange). The FP curve (shown in blue) is
obtained by evaluating the defenders on the clean test data.
An ideal defense would have FP� 0 and TP� 1.

In our next analysis, we evaluate the effect of the number
of defenders on CuRTAIL detection. Fig. 24 shows the AUC
obtained by CuRTAIL for different attack configurations
where the adversary knows everything about the model but
is not aware of the defenders. For a given number of defend-
ers, the AUC for MNIST is relatively higher compared to
more complex benchmarks (e.g., CIFAR-10). This is consis-
tent with our hypothesis since the unexplored sub-space is
larger in higher-dimensional benchmarks. Note that using
more defenders eventually increases the AUC. We further
summarize the performance of the CuRTAIL methodology
against each of the FGS, JSMA, Deepfool, BIM, and Carli-
ni&WagnerL2 attacks in Table 4. We used the open source

library4 provided by [29], for implementation of the attack
algorithms. The JSMA attack was too slow on ImageNet,
thus, we did not include the results in this study.

6.4 Adaptive White-Box Attack

To further corroborate the robustness of MRR methodology,
we applied the state-of-the-art Carlini&WagnerL2 attack in a
white-box setting. A similar strategywas used in [12] to break
the state-of-the-art countermeasures including MagNet [26],
APE-GAN [31], and other recently proposed efficient defen-
ces methods (e.g., [30]). The attacks in [12] are gray-box
attacks, meaning that the attacker is aware of the defense
mechanism but does not have access to its parameters. We
perform a more powerful attack against our defense where

the attacker also knows the parameter set of the defenders.
Following the guidelines in [12], we modify the objective
function of the Carlini&WagnerL2 attack as follows:

minimize kx� xak2 þ c � lcðxaÞ þ d � ldðxaÞ

ld ¼
XN
n¼1

maxðDnðxaÞ � tin; 0Þ;
(15)

where x is the original input, xa is the adversarial sample,
lcð�Þ is a cost designed to mislead the victim classifier, and
ldð�Þ is a cost designed to deceive the defender models.
Parameters c and d are constants which are tuned using
binary search. We followed the instructions of [12] to set the
loss function ld in order to incorporate the MRR specific
defense parameters. In particular, the value DnðxaÞ in
Eq. (15) is the L2 distance kfðxaÞ � Cik2 in the nth defender, i
is the target class for misclassification attack, and tin is the
cut-off threshold for class i in the nth defender. We set the
learning rate of the attack to 0.01, the confidence rate to 0, the
maximum number of iterations to 10,000, and the number of
binary searches to 20 as suggested in [12]. For attack imple-
mentation, we used the library provided by the authors of
the Carlini&WagnerL2 adaptive attack5 and incorporated
our defender specific loss into their algorithm.

Table 5 presents the success rate of the attack algorithm
for different number of defender modules and security
parameters for the MNIST benchmark. As shown in Table 5,
with a single defender, the defense success rate (TP) is 43
and 46 percent for security parameters of SP = 1% and
SP=5%, respectively. If we employ 16 defender modules in
parallel, the TP rate increases to 66 percent for SP = 1% and
84% for SP=5%, at the cost of a small increase in FP rate.
Higher number of MRR modules in our defense mechanism
also results in a larger perturbation in the generated adver-
sarial samples. Note that such high perturbations can be
detected via CuRTAIL input defenders; however, we did
not include input defenders in this evaluation for compari-
son fairness. Compared to the state-of-the-art defenses of

Fig. 23. CuRTAIL security parameter controls the TP and FP rates. The number of latent defenders in this experiment is 16.

Fig. 24. The use of more modular redundancies improves the detection performance for all datasets.

4. https://github.com/tensorflow/cleverhans 5. https://github.com/carlini/MagNet
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Table 5, CuRTAIL achieves a better TP rate. In addition, the
attacker is required to inject a higher amount of perturba-
tion (in terms of L2 norm) to mislead CuRTAIL defenders in
a white-box setting.

6.5 Performance Analysis

We implement the customized defender modules on Xilinx
Zynq-ZC702 and Xilinx UltraScale-VCU108 FPGA platforms.
All modules are synthesized using Xilinx Vivado v2017.2 .
We integrate the synthesized modules into a system-level
block diagram with required peripherals, such as the
DRAM, using Vivado IP Integrator. The frequency is set to
150 MHz and power consumption is estimated using the
synthesis tool. For comparison purposes, we evaluate CuR-
TAIL performnace against a highly-optimized TensorFlow-
based implementation on two low-power embedded
boards: (i) The Jetson TK1 development kit which contains
an NVIDIA Kepler GPU with 192 CUDA Cores as well as an
ARM Cortex-A15 4-core CPU. (ii) A more powerful Jetson
TX2 board with an NVIDIA Pascal GPU with 256 cores and
a 6-core ARM v8 CPU.

Robustness and Throughput Trade-Off. Increasing the num-
ber of checkpoints improves the reliability of model predic-
tion in presence of adversarial attacks (Section 6.2) at the
cost of reducing the effective throughput of the system. In
applications with severe resource constraints, it is crucial to
optimize system performance to ensure maximum immu-
nity while adhering to the user-defined timing constraints.
In scenarios with more flexible timing budget, the customi-
zation tool automatically allocates more instances of the
defender modules while under strict timing constraints, the
robustness is decreased in favor of the throughput.

Fig. 25 demonstrates the throughput versus the number
of defender modules for MNIST benchmark on Zynq

FPGA. CuRTAIL accelerator can reach a throughput of
1,400 samples per second with 16 MRRs. For the SVHN
benchmark, which has a similar DNN architecture to
MNIST, the ARM v8 CPU can achieve a throughput of 1,400
samples per second when only one defender is executed.
CuRTAIL implementation on UltraScale FPGA can run 8
defenders in parallel the same throughput. This directly
translates to an improvement in the AUC from 0.76 to 0.96.

Throughput and Energy Analysis. To corroborate the effi-
ciency of CuRTAIL, we also evaluate MRR performance
on TK1 and TX2 boards operating in CPU-GPU and CPU-
only modes. We define the performance-per-Watt measure
as the throughput over the total power consumed by the
system. This metric is an effective representation of the
system performance since it integrates two influential fac-
tors for real-world embedded applications. All evaluations
in this section are performed with only one input and
latent defender. Fig. 26 (left) illustrates the performance-
per-Watt for different hardware platforms. Numbers are
normalized by the performance-per-Watt of the TK1 plat-
form in CPU mode. As shown, CuRTAIL implementation
on Zynq shows an average of 38	 improvement over TK1
and 6:2	 improvement over TX2 in CPU mode. The more
expensive UltraScale FPGA performs relatively better with
an average improvement of 193	 and 31:7	 over TK1 and
TX2, respectively.

Fig. 26 (right) shows the comparisons with GPU plat-
forms. All values are normalized by the TK1 performance-
per-Watt in the CPU-GPU mode. Our evaluations show an
average of 9	 and 45:7	 improvement over TK1 by the
Zynq and UltraScale FPGAs, respectively. Comparisons
with TX2 demonstrate 2:74	 and 41:5	 improvement for
the Zynq and UltraScale implementations. Note that Ultra-
Scale performs noticeably better than Zynq which empha-
sizes the effect of resource constraints on parallelism and
throughput.

TABLE 4
AUC Obtained by 16 Latent Defenders Checkpointing the

Second-to-Last Layer of the Victim Model

MNIST SVHN CIFAR-10 CIFAR-100 ImageNet

FGS 0.997 0.969 0.911 0.885 0.881
JSMA 0.995 0.995 0.966 0.961 -
Deepfool 0.996 0.974 0.960 0.850 0.908
CarliniL2 0.987 0.963 0.929 0.944 0.907
BIM 0.994 0.931 0.907 0.821 0.820

For ImageNet, we only used 1 defender due to the high computational complex-
ity of the pertinent neural network and attacks.

TABLE 5
Evaluation of MRR Methodology Against Adaptive White-Box Attack

MRRMethodology (White-box Attack) Prior-Art Defenses (Gray-box Attack)

Security Parameter SP=1% SP=5% Magnet Efficient Defenses APE-GAN

Number of Defenders N=0 N=1 N=2 N=4 N=8 N=16 N=0 N=1 N=2 N=4 N=8 N=16 N=16 - -
Defense Success (TP Rate) - 43% 53% 64% 65% 66% - 46% 63% 69% 81% 84% 1% 0% 0%
Normalized Distortion (L2) 1.00 1.04 1.11 1.12 1.31 1.38 1.00 1.09 1.28 1.28 1.63 1.57 1.37 1.30 1.06
FP Rate - 2.9% 4.4% 6.1% 7.8% 8.4% - 6.9% 11.2% 16.2% 21.9% 27.6% - - -

We compare our results with prior work including Magnet [26], Efficient Defenses Against Adversarial Attacks [30], and APE-GAN [31]. For each evaluation,
the L2 distortion is normalized to that of the attack without the presence of any defense mechanism. Note that highly disturbed images (with large L2 distortions)
can be easily detected using the input defenders; however, for fair comparison to prior work, we did not include our non-differentiable input defenders in this
experiment.

Fig. 25. CuRTAIL throughput with samples from the MNIST dataset ver-
sus the number of instantiated defenders (implemented on Xilinx Zync-
ZC702 FPGA).
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6.6 Discussion on Transferability of Adversarial
Samples

Fig. 27 demonstrates an example of the adversarial confu-
sion matrices for victim neural networks with and without
using parallel checkpointing learners. In this example, we
set the security parameter to only 1 percent. As shown, the
adversarial sample generated for the victim model are not
transferred to the checkpointing modules. In fact, the pro-
posed approach can effectively remove/detect adversarial
samples by characterizing the rarely explored sub-spaces
and looking into the statistical density of data points in the
pertinent space.

Note that the remaining adversarial samples that are not
detected in this experiment are crafted from legitimate sam-
ples that are inherently hard to classify even by a human
observer due to the closeness of decision boundaries corre-
sponding to such classes. For instance, in the MNIST appli-
cation, such adversarial samples mostly belong to class 5
that is misclassified to class 3 or class 4 misclassified as 9.
Such misclassifications are indeed the model approximation
error which is well-understood to the statistical nature of
the models. As such, a more precise definition of adversarial
samples is extremely required to distinguish malicious sam-
ples form those that simply lie near the decision boundaries.

7 RELATED WORK

The threat of adversarial samples to the integrity of autono-
mous systems have been shown in the literature for both shal-
low and deep models [3], [10], [14], [32], [33], [34], [35], [36].
Related work ties the existence of adversarial samples to sev-
eral factors, including high feature dimensionality [10], bias
to texture [37], and inherent brittle features [38]. DL models
trained on ImageNet are shown to have bias towards texture

rather than object shapes, resulting in low robustness against
distortions [37]. This can be tied directly with CuRTAIL
hypothesis in the existence of rarely explored regions in
trained models. To address this, authors of [37] propose aug-
menting the training data with strong textual cues, thus forc-
ing the model to focus on shapes rather than textures. Such
augmentations effectively reduce the rarely explored regions
and increase robustness. Authors of [38] show that seemingly
unrelated features, generally imperceptible to humans, can
inherently exist in visual datasets. Surprisingly, such brittle
features contribute significantly to the underlying model’s
generalization capability during training. Authors also con-
nect adversarial samples to these brittle features. Building
upon this connection, CuRTAIL input defenders aim at iden-
tifying such redundant feature at test time.

In response to the various adversarial attacks proposed
in the literature [3], [4], [5], [10], several research attempts
have been made to design DL strategies that are more
robust in the face of adversarial examples. Existing counter-
measures can be classified into two categories:

(i) Supervised strategies which incorporate noisy inputs
as training samples [39], [40] and/or inject adversarial
examples into the training phase [10], [36], [41], [42]. Such
defenses are tailored for specific perturbation patterns and
can only partially evade adversarial samples generated by
other attack scenarios [40].

(ii) Unsupervised approaches which aim to smoothen the
underlying gradient space (decision boundaries) by incor-
porating a regularization term in the loss function [5], [43]
or compressing the neural network [9]. These works are
mainly oblivious to the pertinent data density as they
implicitly assume that adversarial samples originate from
the piece-wise linear behavior of decision boundaries. As
such, their integrity can be jeopardized by crafting data
points with specific perturbations that pass the smoothened
decision boundaries [44]. [26] proposes manifold projection
via auto-encoders to reform adversarial samples, which can
be evaded by adaptive gray-box attacks as shown in [12].

The above works generally aim at correcting the decision
of the victim network in face of adversaries. Alternatively, a
line of research (including CuRTAIL) focuses on detection
of adversarial samples without decision correction. They
speculate that adversarial samples are not drawn from the
same distribution as legitimate data. [45] proposes using
Local Intrinsic Dimensionality (LID) to characterize proper-
ties of adversarial examples. However, LID is not able to

Fig. 26. Performance-per-Watt comparison with embedded CPU (left)
and CPU-GPU (right) platforms. Reports are normalized by the perfor-
mance-per-Watt of TK1 .

Fig. 27. Example adversarial confusion matrix (a) without MRR defense mechanism and (b) with MRR defense and SP ¼ 1%. (c) Example adversar-
ial samples for which accurate detection is hard due to the closeness of decision boundaries.
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detect high confidence adversarial examples [46]. [47] meas-
ures the uncertainty in the victim model’s predictions using
Mahalanobis distance-based scores. [48] attempts to detect
adversaries by measuring the changes in the victim model’s
logits as the input is randomly perturbed. Nevertheless, all
aforementioned methods study the statistics of the victim
model’s features which cannot optimally identify the rarely
explored regions. This is because the victim model’s main
task and objective is accurate classification of explored
regions. CuRTAIL alternatively focuses on altering the
training objective of the MRRs to enable high-margin robust
classification, which is later used for PDF estimation.

CuRTAIL unsupervised defense does not assume any
particular attack strategy and/or perturbation pattern and
is capable of withstanding all the existing attacks to date.
Note that we target detection of adversarial samples with-
out decision correction. As such, a stand-alone application
of CuRTAIL remains vulnerable to denial of service attacks.

8 CONCLUSION

This paper proposes CuRTAIL, a novel end-to-end frame-
work for online accelerated defense against adversarial sam-
ples in the context of deep learning. We introduce modular
robust redundancy as a viable countermeasure to signifi-
cantly reduce the risk of integrity attacks. The proposed
MRRmethodology explicitly characterizes statistical proper-
ties of the featureswithin different layers of a neural network
by learning the corresponding probability density functions.
Using a hardware/algorithm co-design approach, CuRTAIL
automated customization tool optimizes the defense layout
to maximize model reliability (safety) while complying with
the hardware and/or user constraints. This, in turn, ensures
applicability to various deep learning tasks and hardware
platforms. CuRTAIL robustness is evaluated against a wide
range of attack models including FGS, Deepfool, BIM, and
Carlini&WagnerL2. Proof-of-concept experiments on vari-
ous data collections including MNIST, SVHN, CIFAR, and a
subset of ImageNet dataset corroborate successful detection
of adversarial samples with relatively small probability of
false alarm. Our evaluations on various hardware platforms
indicates the effectiveness and practicality of CuRTAIL.
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