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Abstract—We introduce GenMatch, a novel set of tech-
niques based on hardware synthesis, for achieving efficient
and scalable privacy-preserving genetic testing. Processing
and handling sensitive genome data require methodologies
to thwart possible attacks and data theft scenarios. The
GenMatch secure genome testing method utilizes Yao’s
Garbled Circuit (GC) protocol and creates a formulation
of the matching problem in a sequential GC format. Our
formulation involves private matching of genome data by
the GC protocol. Our method reduces the memory footprint
of the secure computation such that it can be done in
a resource-constrained devices like embedded platforms,
rendering the method scalable and time-efficient. Proof-
of-concept evaluations are performed on the application
of matching Human Leukocyte Antigen (HLA) data for
organ and tissue transplant compatibility between recipient
and donors. This type of testing also has applications in
ancestry testing and genetic matchmaking. HLA data of
the recipient is matched with a database of possible donor
HLA data while keeping the data from both parties private.
Experimental results on real genome data demonstrate
the practicability of GenMatch in terms of timing and
communication complexity for HLA database in the order
of million user profiles.

Index Terms—Privacy-Preserving Computing, DNA
Matching, Secure Function Evaluation, Garbled Circuit

I. INTRODUCTION

Whole genome sequencing is a scientific process that
is used to determine the complete DNA sequence of an
organism [1]. A lot of progress has been made in this
area in the past couple of decades. In fact, efforts are
being made to commercialize this process because of
the potential applications. A number of companies are
competing for the market share of cost-effective platform
for full genome sequencing [2].

The availability of embedded platforms capable of
the full sequencing of a genome with on-board stor-
age of the data in digital hardware, introduces new
applications, challenges, and opportunities. On one hand,
several new and exciting applications can be realized at
a fraction of today’s cost. One such emerging application
is personalized medicine where the effect of a drug
on a person can be tested genetically to determine
the drug’s compatibility with the person. This can also
lead to reducing the risks of side effects and adverse
reactions. Another application is genetic compatibility
which determines agreeableness of genomes between
an organ donor and a recipient. The first generation

sequencing companies have mostly failed in this type
of testing, mainly due to the high cost associated with
these procedures. Furthermore, in the earlier commercial
solutions, both partners had to send genome samples to
the testing company, which was both inconvenient and
privacy invasive.

On the other hand, the privacy requirements for han-
dling sensitive genome data arise serious challenges. Not
only the sensitive DNA data reveals important personal
information about the individual, but also, the process is
irreversible and could cause lifelong irreparable damages
to the DNA owner and her relatives sharing similar genes.
As a result, it is necessary to devise methods that protect
the privacy of individuals interacting with third party
companies or research organizations handling genome
data. Earlier work in this area explored ways of pre-
serving privacy by anonymizing the data or formulating
secure protocols. The current literature falls within one of
the two categories: (i) heuristic solutions that lack strong
security proofs or guarantees within the standard model
[3], [4] or (ii) provably secure solutions that have limited
scalability on real DNA datasets [5].

Our work explores practical privacy-preserving DNA
testing based on Yao’s provably secure Garbled Circuit
(GC) protocol. Specifically, we consider Human Leuko-
cyte Antigen (HLA) analysis which is a crucial test in
organ transplantation [6]-[9]. First, the raw genome data
of the organ receiver (or donor) is processed to obtain
required HLA information for performing the privacy-
preserving genome test. (In our case, we used the raw
genome data from the Human Genome Project [10]
database.) Then, the GC protocol is used to compare
this HLA data with an existing HLA database of donors
(or receivers) to compute the best match for the HLA
data while preserving the privacy of all parties involved.
We adopt the TinyGarble platform [I1] to implement
the GC protocol. TinyGarble takes a sequential circuit
description of the function that needs to be evaluated se-
curely. We formulate a sequential circuit for performing
the HLA data compatibility test and show that it can
be efficiently implemented using Verilog. Our explicit
contributions are as follows:

o Introduction of the first efficient, practical, and

scalable methodology for secure organ and tissue
transplantation compatibility test. Our method lever-



ages hardware synthesis techniques to formulate the
genome matching algorithm for the GC protocol.
The low memory footprint of our method allows the
first implementation of provably secure matching on
embedded devices.

o Design of the first sequential circuit for the purpose
of organ compatibility testing. The circuit performs
a comparison with one entity in the database at each
sequential clock cycle and incurs a circuit size of
logarithmic complexity which can scale well for big
database sizes.

e Creation of special computational blocks cus-
tomized for the GC-based DNA matching applica-
tions. We also suggest a new method for a cumula-
tive addition where the output bit-length increases
with each stage.

e Proof-of-concept implementation of privacy-
preserving organ and tissue transplantation
compatibility test and demonstrating the scalability
of our work by performing a compatibility test on
a database in the order of million user profiles.

II. PRELIMINARIES AND DEFINITIONS
A. Human Genome

A human genome is the complete set of genetic and
biological information of a person. It consists of about 3
billion nucleotides of types guanine (G), adenine (A),
thymine (T), or cytosine (C). Several active research
projects aim at analyzing the genome data to extract
specific information or finding a correlation between
genome patterns and physical/mental traits.

We focus on a specific part of DNA called the Hu-
man Leukocyte Antigen (HLA). HLA genes are the
human equivalents of Major Histocompatibility Complex
(MHC) genes found in most vertebrates. HLA genes
encode proteins that are responsible for regulation of
the immune system in humans. In other words, HLA is
responsible for determining whether a tissue is native or
foreign. HLA is present in chromosome 6 of the genome.
There are several classes of this part of the DNA and they
have different functions.

The HLA genes that are inherited by an individual on
a single chromosome constitute a “haplotype” [12]. Each
person receives a pair of HLA genes, one from each of
the parents. An example of HLA data of a person is
shown in Fig. 1.

HLA mismatch in case of organ transplant is a ma-
jor cause of transplant rejections and graft-versus-host-
disease. Therefore, it is important to match HLA data
before transplantation. It should also be noted that HLA
data can reveal information about genetic ancestry and
predisposition of the person towards certain autoimmune
diseases. Apart from this, HLA can also be used for ge-
netic compatibility testing. It was observed that married
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Fig. 1: Sample HLA template for an individual.

couples were less likely to share HLA alleles [13].

B. Secure Computation

In a two-party privacy-preserving computing, Alice
and Bob aim to jointly evaluate a given public function
z = f(xz,y) where = and y are the private inputs
owned by Alice and Bob respectively. At the end of the
computation, the output will be available to one party or
to both.

In the GC theory, the function f(.,.) must be described
as a Boolean circuit where the function arguments (z and
) should be strings of bits. Representing a function as a
Boolean circuit may result in a large number of Boolean
gates. Each 2-input Boolean gates must be accompanied
by calls to a standard cryptographic function (e.g., AES).
The only exception is XOR; the authors in [14] have
shown that an XOR gate can be garbled with a negligible
cost without requiring expensive cryptography. There-
fore, the computational cost of GC can be considerably
reduced by representing the circuit with the minimum
number of non-XOR gates.

Recent advances in this area suggest that the GC pro-
tocol can be realized in three stages: (i) circuit garbling,
(ii) data exchange, and (iii) circuit evaluation. One of
the parties say, Bob, becomes the Garbler, responsible
for garbling the circuit. Communication involves both
Alice and Bob. Finally, the circuit is evaluated by the
non-Garbler party, i.e., Alice here. The computational
time and communication are dominated by and also
proportional to the total number of garbled tables (non-
XOR gates) needed to evaluate the circuit.

III. RELATED WORK

Genetic testing and it’s digitization raise some impor-
tant privacy and ethical concerns. The authors in [15]
summarize the issues and put forth the main challenges
for the research community. They not only talk about
technical issues such as efficiency, usability, and pitfalls
of genetic testing, but also about policies that should be
made into laws when handling genome data. The work in
[16] answers some of the questions in [15] and provides
a framework for the secure handling of genome data.

There are different technical approaches to in silico
privacy-preserving genetic testing. In [17], the authors
create android applications for genetic testing methods



such as paternity testing, ancestry testing, and personal-
ized medicine. They are concerned with the efficiency
and usability of the applications and conclude that this
is an area worth exploring. They use hash function
based Private Set Intersection Cardinality (PSI-CA), Au-
thorized Private Set Intersection (APSI) and additively
homomorphic encryption of Secure Hamming Distance
(SHD) for each of the applications and implement them
on an android based platform. They show that comparing
the whole genomes for compatibility is both unnecessary
and computationally infeasible for a mobile device. This
makes the pre-processing an important and aiding step to
extract the information that is needed for a specific test.
This pre-processing stage helps to carry out the test on a
mobile device. They propose P3MT protocol to test for
HLA-B mutation which is important in determining the
sensitivity to a drug used in HIV treatment. Our work
differs from their work in terms of the framework of
the test as well as the application. They work with HLA
data but their test is limited to a particular mutation as an
example for personalized medicine in contrast with the
database-based compatibility test described in this paper.

The work in [5] describes a GC-based approach for
measuring the similarity between two genome sequences
by performing secure edit distance computation. This
computation is performed on raw genome data and is not
scalable. It utilizes the full genome which is unnecessary
especially when only a small part of the genome data
needs to be tested.

The authors of [18] propose homomorphic encryp-
tion based identification, paternity and ancestry testing
exploiting the Short Tandem Repeat (STR) property
exhibited by genetic sequences. Another proposal in
[19] uses homomorphic encryption to perform queries
on encrypted database of genome sequences while pre-
serving the identities of each of the individuals. This
is similar to our setting but the application involves
testing for Single Nucleotide Polymorphisms (SNPs) in
a database for research purposes involving the whole
genome sequences without pre-processing. The authors
in [20] describe a similar situation but consider an
implementation of a privacy-preserving forensic DNA
database. Each DNA in the database is encrypted using
a part of its DNA sample and can only be decrypted if
the person submitting the query has the appropriate key
generated from the suspect’s DNA. While this works for
a forensic database application, it cannot be extended to
other genetic testings except for those involving identity
protection.

The work in [2]] concentrates on searching a fi-
nite length DNA fragment in another DNA template
protecting the privacy of both parties involved. They
designed a protocol that allows an oblivious evaluation of
a finite state machine which has a linear relation between

communication complexity on one side and the number
of states and length of input data on the other side.
Similar to some of the previously mentioned works, they
work with raw genome data making it hard to scale and
unnecessarily complex to implement.

In contrast to aforementioned works, we design a scal-
able database-based secure DNA compatibility testing
utilizing the GC protocol. We adopt TinyGarble platform
[11] to implement our method and as shown in Section V,
our approach is highly efficient and scalable.

IV. OUR APPROACH
A. Scenario

We explore the scenario where a patient needs an organ
transplantation and is looking for compatible donors. We
assume that the patient has undergone full genome se-
quencing. The HLA data is obtained from pre-processing
the genome data. Fully sequenced genomes are very large
files and secure computation on the data as a whole is
both infeasible and unnecessary. Instead, we extract the
information required for compatibility testing through
off-line processing. Assuming we have a database of
HLA data of donors, we find the best possible match
for the patient’s HLA data.

B. Pre-processing

The HLA data needed for our test can be extracted
from the fully sequenced genome. Samples of fully
sequenced genome data are available through the Human
Genome Project to researchers for analysis and appli-
cation specific usage [10]. This data can be processed
using HLA-genotyper [22], a python based library used
for HLA typing. This is an offline process as it involves
no interaction between the two parties and it is also
convenient as it only has to be done once and the
obtained data can be stored and used in the future.

C. Boolean Circuit

The extracted data from pre-processing contains a
pair of haplotypes. One from the mother and the other
from the father. There are 6 pairs of haplotype data,
HLA-A, HLA-B, HLA-C, HLA-DQA, HLA-DQB, and
HLA-DRB. The Algorithm 1 describes the process of
comparison of two HLA data [12], [23], [24].

We use Verilog to characterize the Boolean circuit
required for the GC protocol. This circuit calculates
the percentage of compatibility between two samples of
HLA data and is shown in Fig. 2. This is a sequential
circuit which takes the patient’s HLA data and also one
HLA profile in a database as inputs at each clock cycle.
The circuit compares the compatibility among pairwise
HLA profile as described in Algorithm 1. The final
compatibility is the average of all pairwise HLA type
compatibilities. Instead of directly finding the average,



Algorithm 1: Algorithm for computing percentage of
HLA compatibility between 2 persons.
Inputs: 6 pairs of HLA data from person 1 (HLAI
[index] [pair]) and 6 pairs of HLA data from person 2
(HLAZ2 [index] [pair]).
Outputs: Percentage of compatibility between two sam-
ples.

1: total compatibility = 0

2: for n =1 1to 6 do

3. if HLA1[n][1) == HLA2[n][1] then

4 if HLA1[n][2] == HLA2[n|[2] then

5: compatibility = 1

6: else

7: compatibility = 0.5

8 end if

9: else if HLA1[n][2] == HLA2[n|[1] then

10: if HLA1[n][1] == HLA2[n|[2] then

11: compatibility = 1

12: else

13: compatibility = 0.5

14: end if

15:  else if HLA1[n|[1] == HLA2[n|[2] then

16: compatibility = 0.5

17:  else if HLA1[n][2] == HLA2[n|[2] then

18: compatibility = 0.5

19:  else

20: compatibility = 0

21:  end if

22:  total compatibility = total compatibility + é X
compatibility

23: end for

we propose an alternative approach, described in Sec-
tion I'V-D, which results in a more efficient computation.
The final compatibility is then compared with the previ-
ously most compatible profile (pre-)stored in the memory
(D-FFs). If this new HLA profile is more compatible
than the previous one, this new value along with the
index of this new profile will be stored in the memory.
To keep track of which index we are comparing at a
given time, we have embedded a counter in this circuit
which is incremented at each clock cycle by one. Since
we compare one profile from the database at each clock
cycle, we need to evaluate the circuit for N clock cycles,
where IV is the number of profiles in the database.

D. Circuit Optimizations and Size Model

The optimizations we describe here are different from
the state-of-the-art optimizations that are used for exe-
cuting the GC protocol in Section I'V-E. In Section IV-E,
we explain that an XOR gate does not need a garbled
table and hence the cost of computation of an XOR
gate is negligible. Therefore, the goal is to minimize the
number of non-XOR gates in the circuit. Here are some
techniques we propose:

Translating floating-point operations into integer
operations: As discussed in Section IV-B, we need
to calculate the compatibility of pairwise HLA data
between the patient and a profile in the database. Possible
outcomes for each HLA type comparison can be 0, 0.5
or 1, we can encode these outcomes into 3 binary values
002, 012 and 102. Then only 2 bits are sufficient to
represent them. For calculating the final average, we
need to do an integer addition instead of the floating-
point addition and the division can be omitted since it is
a division by fixed number for all comparisons among
different profiles (division by 6). This will result in a
huge reduction in the circuit size.

Designing special building blocks: Since the goal is
to reduce the number of non-XOR gates in the circuit, we
need to design each block to get the minimum number
of non-XOR gates possible. To achieve this goal we have
designed special comparison block. This block has only
b — 1 non-XOR gates for comparing the binary input of
length b-bit. At each clock cycle, we need to increment
the counter by one and this is fixed for all clock cycles
and hence, we have optimized this counter to have the
least number of non-XOR gates.

Adder optimization: In order to find the summation
of 6 pairwise comparisons between different HLA types,
we propose a hierarchical structure as shows in Fig. 2
instead of instantiating the default addition block. This
structure is more efficient because it gives us a dynamic
bit-length. The bit-length of output for each adder in-
creases as we add the results of more comparisons. As an
example, in the worst-case-scenario, for the first addition,
we only need to add 105 and 105 which will result in
2-bit adder and use a carryout bit. As we progress in
this structure we need higher bit-length to represent the
result and this will give us the most efficient way to do
this summation. Also, each adder is specially designed
to have the least number of non-XOR gates.

Perfect match signal: We have a 1-bit signal in the
circuit which sets to high if we find a perfect match
between patient’s HLA data and one of the profiles in
the bank. Therefore, there is no need to continue the
protocol and we can terminate it sooner. The perfect
match happens when all HLA types are same. Since
every value during the execution of the GC protocol
is encrypted, both Garbler and Evaluator need to reveal
their shared secret to achieve the actual value of this
signal. While revealing this bit will inform us as soon as
we have found the best match possible, it will not reveal
anything about any HLA data from patient side and from
database side.

1) Circuit Size Model: Here we analyze the size of
the circuit and present a quantitative formula for its size.
There are some parts of the circuit that are not dependent
on the database size (V) such as HLA comparison blocks
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Fig. 2: Architecture of the sequential circuit used in the GC protocol.

and hierarchical structure of adders. However, some parts
have a number of non-XOR gates proportional to log N,
including counter and maximum value comparison block.
Therefore, the final number of non-XOR gates is a linear
function of log N plus a constant factor. Fig. 3 proves
our analysis and shows the number of non-XOR gates for
different number of database size (V). The experimental
results deviate slightly from theoretical function due to
the heuristic approaches used for synthesizing the circuit.
The formula for calculating the number of non-XOR
gates is a X log N + 3, where o = 18.6 and 8 = 395.
As we discussed, we need to evaluate this sequential
circuit for total number of N clock cycles to compare
the patient’s HLA data with all of the HLA data in the
database. Therefore, total number of garbled tables we
need to evaluate, one for each non-XOR gate, is N times
the total number of non-XOR gates in the circuit:

Total # of garbled tables = N X (a x log N + 3)

Above equation shows that our approach can be easily
scaled up to huge database sizes such as million due
to the linearithmic complexity. Note that in the GC
protocol, the computational time and communication are
proportional to the total number of garbled tables.
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Fig. 3: Number of non-XOR gates of the circuit vs. database size N.

E. Garbled Circuit Protocol Optimizations

We explained the GC protocol in Section II. Here, we

list some of the recent optimizations, we have used:

o Free XOR [25]: Kolesnikov and Schneider suggest
that XOR gates can be evaluated without generating
and sending the garbled table and this will make the
XOR gates almost free of cost.

« Half-AND [26]: In this paper, authors introduce a
new technique for processing AND gates in the
GC protocol. They prove that any AND gate can
be garbled and evaluated by a garbled table with
only two rows as opposed to the traditional four-row
table. Therefore, almost 50% efficiency is achieved
for processing AND gates.

o Garbling with fixed-key block cipher [27]: Bellare
et al., suggested usage of fixed-key block cipher to
implement Hash function used in the GC protocol.
Using a processor with AES instruction in its ISA,
computing each hash function takes one clock cycle
of the CPU.

V. RESULTS

Our experimental results are performed using two
processes on Intel Core i7-2600 CPU @ 3.4GHz with
12GB RAM on a 64-bit Ubuntu 14 operating system. The
security parameter in our setup (encryption key length)
is 128-bit. The circuits are synthesized by the Synopsis
Design Compiler. Table I shows the results. Since there is
no similar GC-based work with an application perform-
ing on a database of genome data, we could not compare
our results with previous works.

VI. CONCLUSION

In this paper, we introduced the first practical and
scalable realization of a provably secure HLA matching
used in organ transplantation donor compatibility test
under the honest-but-curious attack model. Our approach
utilizes circuit optimization and logic synthesis for find-
ing a scalable implementation of HLA matching in the



Database # of #of Non-[ Total Total Garbled| Communication Time (s)
Size XORs XORs Gates Tables (MBytes)

10 438 400 838 4,000 1.0 0.07

100 447 412 859 41,200 10.5 0.62

1,000 457 424 881 424,000 108.5 5.79

10,000 433 459 892 4,590,000 1,175.0 63.20

100,000 436 474 910 47,400,000 12,134.4 546.09

1,000,000 439 489 928 | 489,000,000 125,184.0 | 5,132.25

TABLE I: Number of XOR and non-XOR gates of circuit and total timing and communication for different size of database.

TinyGarble framework. We demonstrated an end-to-end
implementation of the system. Our results show that the
methodology is highly efficient, and it takes only a few
hours to perform the matching on a database of a million
participants with pre-processed data. These results are
scalable, and way more practical than the state-of-the-art
in this field, and they enable a range of new applications
for privacy-preserving genetic testing.
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