
COINN: Crypto/ML Codesign for Oblivious Inference via
Neural Networks

Siam Umar Hussain∗
siamumar@ucsd.edu

UC San Diego
USA

Mojan Javaheripi∗
mojan@ucsd.edu
UC San Diego

USA

Mohammad Samragh∗
msamragh@ucsd.edu

UC San Diego
USA

Farinaz Koushanfar
farinaz@ucsd.edu
UC San Diego

USA

ABSTRACT
We introduce COINN – an e�cient, accurate, and scalable frame-
work for oblivious deep neural network (DNN) inference in the
two-party setting. In our system, DNN inference is performed with-
out revealing the client’s private inputs to the server or revealing
server’s proprietary DNN weights to the client. To speedup the
secure inference while maintaining a high accuracy, we make three
interlinked innovations in the plaintext and ciphertext domains:
(i) we develop a new domain-speci�c low-bit quantization scheme
tailored for high-e�ciency ciphertext computation, (ii) we con-
struct novel techniques for increasing data re-use in secure matrix-
multiplication allowing us to gain signi�cant performance boosts
through factored operations, and (iii) we propose customized cryp-
tographic protocols that complement our optimized DNNs in the
ciphertext domain. By co-optimization of the aforesaid components,
COINN brings an unprecedented level of e�ciency to the setting of
oblivious DNN inference, achieving an end-to-end runtime speedup
of 4.7⇥–14.4⇥ over the state-of-the-art. We demonstrate the scala-
bility of our proposed methods by optimizing complex DNNs with
over 100 layers and performing oblivious inference in the Billion-
operation regime for the challenging ImageNet dataset. Our frame-
work is available at https://github.com/ACESLabUCSD/COINN.git.

CCS CONCEPTS
• Security and privacy ! Privacy-preserving protocols; •
Computing methodologies!Machine learning.

KEYWORDS
Privacy-preserving deep neural network inference; secure two-
party computation

ACM Reference Format:
Siam Umar Hussain, Mojan Javaheripi, Mohammad Samragh, and Farinaz
Koushanfar. 2021. COINN: Crypto/ML Codesign for Oblivious Inference
via Neural Networks. In Proceedings of the 2021 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’21), November 15–19, 2021,
Virtual Event, Republic of Korea. ACM, New York, NY, USA, 16 pages. https:
//doi.org/10.1145/3460120.3484797

∗Authors contributed equally to this research.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the� rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8454-4/21/11.
https://doi.org/10.1145/3460120.3484797

1 INTRODUCTION
Recent algorithmic and technological breakthroughs in Machine
Learning (ML) have led to a surge in cloud-based inference using
Deep Neural Networks (DNNs). In this scenario, a server trains and
holds the DNN model. Clients then send their data to the server to
perform inference using the server’s trained DNN. Cloud-based in-
ference, a.k.a. Machine Learning as a Service (MLaaS), is integrated
in a wide range of real-world applications such as personal assis-
tants [32], face authentication [40], medical diagnosis [4, 18, 19, 45],
and health monitoring [3]. However, plaintext DNN inference ei-
ther violate the users’ privacy by revealing their private data to the
server or infringe the server’s intellectual property by exposing
its proprietary model/data to the client. This paper focuses on the
critical subject of oblivious inference, where the server and the
client participate in two-party secure computation to run inference
without revealing either the model parameters or client’s data.

We present COINN, a provably secure cryptographic framework
that surpasses the e�ciency of all known methods for oblivious
inference to date. Ourwork addresses the tension between three crit-
ical requirements for privacy-preserving DNN inference, namely,
security, e�ciency, and accuracy. Although several prior works
have attempted to solve this tri-objective, there still remains a large
gap in the accuracy and/or runtime of oblivious inference and plain-
text DNN execution. To deliver a balanced tradeo� between the
above three criteria, we co-design the DNN and the secure execution
protocol and holistically optimize both aspects via our automated
design con�guration tool. Our key design goals are as follows:

1 Compact Communication and Computation: We opti-
mize the computation bitwidth to reduce the secure execution
cost of both linear and nonlinear operations. In doing this opti-
mization, we adapt techniques from Genetic Algorithms [57] to
the constraints of secure computation. Moreover, we design ef-
�cient cryptographic protocols that reduce the communication
cost of secure matrix-multiplication by 5⇥–9⇥, and achieve an
end-to-end runtime speedup of 4.7⇥–14.4⇥ over best prior work,
namely CrypTFow2 [46], in the LAN setting.
2 Inference Accuracy: COINN improves the accuracy of prior
ML-security co-optimization methods, namely [38, 41, 47], by
0.6%–4.7% while achieving 23.1⇥–36.8⇥ lower secure execution
runtime in the LAN setting.
3 Scalability: Our framework scales to DNNs with over 100
layers. COINN achieves 6.1⇥–7.8⇥ lower runtime in the LAN
setting for the largest ever studied image classi�cation task [46]
with over 4 billion arithmetic operations.

In what follows, we review the design challenges, survey the prior
work, and specify our contributions in detail.

This work is licensed under a Creative Commons Attribution-NonCommercial-
ShareAlike International 4.0 License.

CCS '21, November 15–19, 2021, Virtual Event, Republic of Korea.
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8454-4/21/11.
https://doi.org/10.1145/3460120.3484797

Session 12A: Applications and Privacy of ML CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3266

https://doi.org/10.1145/3460120.3484797
https://creativecommons.org/licenses/by-nc-sa/4.0/

Security-aware Quantization. To reduce the high cost of cipher-
text execution, contemporary methods modify the neural network
architecture by removing/replacing non-linear operations such as
ReLU [22, 41], or binarizing model parameters and activations [47].
While these methods increase the secure execution e�ciency, they
come at the cost of reduced inference accuracy. Our work ap-
proaches the problem from a di�erent perspective. Since the com-
putation and communication overheads of cryptographic protocols
are highly dependent on the computation bitwidth, we focus on
developing quantization methods that take into account the con-
straints of ciphertext computation.

Our low-bit quantization reduces the communication and compu-
tation cost for not only linear but also nonlinear layers which are the
main e�ciency bottleneck reported in prior works [23, 31, 35, 41].
A critical design challenge is that o�-the-shelf quantization meth-
ods used in the ML community comprise operations such as full-
precision accumulation, rounding, and scaling; these operations
are e�cient in plaintext inference but require expensive crypto-
graphic operations in ciphertext. To address this challenge, we
devise a novel ciphertext-aware quantization scheme that replaces
the costly operations with counterparts that are low-cost in the
secure domain while minimally a�ecting the DNN accuracy.

A major concern in computation on quantized data is the linear
growth of the computational bitwidth with increased multiplicative
depth. To mitigate this growth, prior work [41] locally truncates the
bits which sacri�ces the correctness of ciphertext computation by
introducing random noise as shown in followup work [46]. Devel-
oping cryptographic tools for truncation, as suggested in [17, 46],
incurs additional secure execution cost. We address this issue at
zero cost by simulating the e�ect of over�ow in our ML quantiza-
tion library. We further provide training methods compatible with
our over�ow simulation to� ne-tune model weights and minimize
the e�ect of over�ow on model accuracy in the low-bit regime. This,
in turn, eliminates the need for truncation altogether.
E�cient and Secure Linear Arithmetic.Matrix-multiplication
comprises the core operation performed in linear layers of contem-
porary ML models. State-of-the-art oblivious inference frameworks
employ either Arithmetic Sharing (AS) [22, 35] or Homomorphic En-
cryption (HE) [31, 41] for secure matrix-multiplication and Garbled
Circuit (GC) for the nonlinear operations. In this work, we choose
AS for e�cient realization of secure linear layers since the secure
conversion cost between AS and GC is ⇠ 2.5⇥ smaller than the
conversion cost between HE and GC1. Moreover, prior work [47]
demonstrates that current HE-based methods [31, 41] would incur
additional overhead to provide circuit privacy.

Our secure AS-based matrix-multiplication is optimized for the
amortized setting, where one client-server pair runs multiple infer-
ences on the same trained model. In this setting, which is the com-
mon scenario in real-world applications, the matrix-multiplication
in each linear layer is computed in a single round, thus reducing
the e�ect of network latency on runtime.
Factored matrix-multiplication. We further optimize the linear
layers and introduce repetition into the weight matrices. Our opti-
mization ensures that only a limited set of unique values appear in

1The ⇠ 2.5⇥ scale directly compares methods in Gazelle [31] (HE-GC) and ABY [16]
(AS-GC). Further explanation is included in Section 5.3.

Figure 1: Accuracy and secure inference runtime of a 7-
layer DNN on CIFAR-10 dataset using prior work: Del-
phi [41], SafeNet [38], XONN [47], AutoPrivacy [39], and
CrypTFlow2 [46]. The¢ symbol represents COINN.

each layer’s weight matrix with minimal loss of inference accuracy.
The unique values can then be leveraged to replace individual mul-
tiplications with factored ones. This, in turn, allows us to substitute
the bulk of costly multiplications with cheaper conditional summa-
tions. Consider a dot product between two # -dimensional vectors,
which requires # multiplications and additions. By ensuring that
one vector contains + unique values, only # additions followed
by + multiplications and additions are required. To accompany
factored multiplication in cipher domain, we introduce an e�cient
custom protocol based on Oblivious Transfer (OT) that multiplies
the factored weights with the activations without revealing either
the unique values or their locations.
Automated Parameter Con�guration. To fully exploit the e�-
ciency gains from quantization and factored multiplication while
minimally a�ecting the inference accuracy, COINN automatically
determines the best parameters for quantization and factorization
across all DNN layers. By this cross-layer heterogeneous parameter
selection, our system achieves a prominent advantage over previ-
ous work that use homogeneous and super�uous bitwidths [2, 35],
as shown in Figure 1. The� rst challenge in� nding the best set
of per-layer parameters is simultaneous optimization of two of
our objectives that are con�icting – accuracy and e�ciency. To
account for this tradeo�, we leverage a score function that cap-
tures both model accuracy and secure execution cost and assigns a
quantitative measure of quality to each design con�guration. The
second challenge is the excessively large number of possible param-
eter con�gurations (search-space) that grows exponentially with
model layers. We develop a highly scalable parameter optimizer
based on genetic algorithms [57] to e�ectively traverse the large
search-space. The score function is then used to guide our genetic
algorithm to� nd the most optimal DNN for secure inference.
COINN API. Our framework includes a high-level API that fa-
cilitates end-to-end deployment of user-de�ned DNNs for secure
execution. Our API ensures that a user can employ COINN as a black
box without knowing the details of underlying cryptographic pro-
tocols and DNN optimizations. The user provides the desired DNN
model described in the well-known deep learning library PyTorch
along with the trained model parameters. The custom-designed
libraries of COINN for quantization and factored multiplication are
then invoked through our automated design con�gurator to de-
liver the optimized DNN. Our framework also provides a seamless
PyTorch interface to the secure inference engine developed in C++.

Session 12A: Applications and Privacy of ML CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3267

Weights

Plaintext Model Customization

Optimized
Network

Secure Ciphertext Execution

Mat-Mult

Factored
Mat-Mult

Protocol
Conversion

Max-Pool

ReLU

Quantization

Clustering

Automated
Parameter

Configuration

AS GC

Pre-trained
DNN

Target
Accuracy

Model Owner
(Server)

Data Owner
(Client)

Figure 2: Overview of COINN. The plaintext model customization is only performed once per DNN and provides the optimized
network for COINN secure inference.

2 PRELIMINARIES
2.1 Notations
Throughout this manuscript, we represent scalars with lowercase
G , vectors with bold lowercase x, 2-dimensional matrices with up-
percase - , and higher order tensors with bold uppercase letters X.
Element selection is denoted by brackets x[8] and G h8i denotes the
8-th bit of scalar G . 0 denotes a vector/matrix/tensor with all the
entries set to 0. We denote the computational security parameter
with ^ and set it to 128 following common standard [31, 35, 46].

2.2 Deep Neural Networks
Contemporary DNNs comprise two classes of layers: linear (convo-
lution, fully-connected, batch normalization, and average-pooling)
and non-linear (max-pooling and ReLU). We brie�y explain com-
monly used layers in each category.
Convolution. A convolution layer (CONV) is a linear operation
� (X,W, b) : R⇠⇥⇡1⇥⇡1 ! R"⇥⇡2⇥⇡2 , whereX 2 R⇠⇥⇡1⇥⇡1 is the
3-way input tensor, W 2 R"⇥⇠⇥:⇥: is the 4-way weight tensor,
b 2 R" is the bias vector, and Y 2 R"⇥⇡2⇥⇡2 is the 3-way output
tensor. The plaintext operation of CONV can be represented as a
matrix-multiplication followed by bias addition. =, ·- +bwhere
, 2 R"⇥# is achieved by reshaping the original 4-way tensor
into a 2⇡ matrix and - 2 R#⇥! is formed by sliding through the
original 3-way tensor and vectorizing the corresponding windows
into matrix columns. Each element of the output is computed via a
vector dot product (VDP) and the total number of VDPs required
for the matrix-multiplication is" ⇥ !.
Fully-Connected. The fully-connected (FC) layer takes a vector
x 2 R# and generates the output vector y = , ⇥ x + b where
, 2 R"⇥# and 1 2 R" are the weight and bias, respectively.
Similar to CONV, the matrix-vector multiplication consists of "
VDPs between rows of, and x.
Batch Normalization. Batch normalization (BN) is a common
linear operation applied on the output of CONV layers to adjust
the range of numerical values. At test time, BN computes y(⌫#)

8 =
U8y8 + V8 , where U8 and V8 are constant scalars, y8 is one row of
the output . 2 R"⇥! from the preceding CONV, and y(⌫#)

8 is the
corresponding row after BN.
Pooling. Contemporary DNNs include two forms of pooling layers,
namely max-pooling (MP) and average-pooling (AP). These layers
extract : ⇥ : windows from the input X 2 R⇠⇥⇡1⇥⇡1 and compute
the average or the maximum value in the enclosed window as the

output. Assuming the : ⇥ : windows are non-overlapping, pooling
layers reduce data dimensionality from⇠ ⇥⇡1 ⇥⇡1 to⇠ ⇥

⇡1
: ⇥

⇡1
: .

ReLU. This layer often follows a linear layer to introduce non-
linearity in the model. A ReLU operation simply replaces negative
inputs with zero and keeps positive values intact.

2.3 Cryptographic Primitives
Oblivious Transfer.Oblivious Transfer (OT) [44] allows a receiver
Alice to choose one from a set of messages provided by a sender
Bob without revealing her choice. In a 1-out-of-2 OT, (OT2_), Bob
holds a pair of messages {`0, `1} 2 {0, 1}_ ; Alice holds a choice
bit f 2 {0, 1} and obtains `f without revealing f . An extension of
this protocol, called OT extension [28], allows performing a large
number of OT2_ with a� xed number of base OTs and linear number
of less expensive private-key operations. In this work, we employ
two variants of OT extension: random OT (ROT2_) and correlated
OT (COT2_) [5]. In ROT2_ , instead of choosing his messages, Bob
receives random messages {`0, `1} and Alice receives `f . The com-
munication cost of one ROT2_ is a ^-bit message embedding the
choice bit f from Alice to Bob. In COT2_ , Bob chooses a correlation
function i (`) and receives a random message `. Alice receives ` if
f = 0 and i (`) if f = 1. The communication cost of one COT2_ is
cost of one ROT2_ plus a _-bit message from Bob to Alice, i.e., ^ + _.
Arithmetic Sharing (AS).We denote the arithmetic share (AS) [6]
of an integer G between two parties Alice and Bob as JGK. For 1-bit
arithmetic sharing, JGK = JGK� + JGK⌫ mod 21 , where JGK� is held
by Alice and JGK⌫ is held by Bob with JGK, JGK�, JGK⌫ 2 Z21 . All
operations on arithmetic shared values are performed in ring Z21 ,
i.e., operations are mod 21 .
Addition and Multiplication in AS. In AS, addition of shared
variables is free since each party can locally add their shares without
communication. Multiplication can be performed through COT
following [16]. Let us consider the scalar product JIK = JFK�JGK⌫ .
For each bit 8 2 [1], Alice and Bob engage in one COT21 . Bob acts as
the sender with the correlation function q (`8) = `8 + JGK⌫ ⇤ 28 and
receives `8 . Alice acts as the receiver with choice bit f8 = JFK�h8i
and receives `f8 = `8 + f8JGK⌫ ⇤ 28 . Alice and Bob then compute
JIK� =

Õ1�1
8=0 `f8 and JIK⌫ = �

Õ1�1
8=0 `8 , respectively. Note that `8s

are random masks that are independent of the input JGK and are
generated o�ine before JGK is known. Since JIK⌫ only depends on
`8 , it can also be generated o�ine.

Session 12A: Applications and Privacy of ML CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3268

Garbled Circuits. Yao’s Garbled Circuit (GC) [59] is a 2PC proto-
col between Alice, the garbler and Bob, the evaluator, that allows
computation on a function’s Boolean logic representation. In GC,
to share a 1-bit integer G 2 Z21 , for each bit 8 2 [1], Alice holds
a global key � 2 {0, 1}^ and a label !G8 2 {0, 1}^ while Bob holds
!G8 � G h8i�. GC is less e�cient than AS for addition and multiplica-
tion. However, GC is currently the most e�cient protocol for logical
operations, e.g., AND and XOR. Moreover, in GC, bit level manipula-
tions, e.g., left or right shift, incur negligible costs. A 1-bit private
integer can be securely transferred from AS share to GC share (and
vice-versa) by executing a 1-bit addition through GC [16].

3 COINN OVERVIEW AND THREAT MODEL
The COINN framework is composed of two interlinked components
as depicted in Figure 2: (i) model customization on plaintext training
data and (ii) secure execution on client’s private input. We use the
popular ML library, PyTorch, to describe the DNNs and develop
our secure execution protocols in C++. In the following, we brie�y
introduce the incorporated design units.
Plaintext Model Customization. This is a one-time pre-
processing performed on pre-trained full-precision DNNs prior to
oblivious inference. Plaintext model customization is an important
contributor to COINN e�ciency and scalability as it enables cus-
tomization of any given DNN for minimized secure execution cost
under an accuracy constraint. Section 4 encloses the details of our
plaintext model customization and its core components, i.e., cipher-
text aware quantization (§ 4.1), factored matrix-multiplication
(§ 4.2), and automated parameter con�guration (§ 4.3).
Secure Ciphertext Execution. We perform the linear operations
such as CONV, FC through AS, and the nonlinear operations such
as ReLU,MP through GC.Wherever necessary, we securely convert
between AS and GC. We devise e�cient cryptographic protocols
that complement our optimized DNN models in the ciphertext do-
main. Our cryptographic components bene�t from low-bit quanti-
zation performed by our model customization step. We also develop
e�cient AS-based protocols for both regular and factored matrix-
multiplications. A thorough explanation of our end-to-end oblivious
inference and cryptographic protocols is provided in Section 5.

3.1 Threat Model
COINN presents privacy-preserving protocols involving two par-
ties: Alice – the server, and Bob – the client. The private inputs of
Alice and Bob are trained weight parameters of the DNN and input
to the DNN, respectively. At the end of the protocol execution, Bob
learns the inference results without revealing any information to
Alice. Following previous works on privacy-preserving neural net-
work inference [31, 35, 46], we adopt an honest-but-curious security
model where the two parties follow the agreed upon protocol, yet
may try to learn more from the information at hand.

Consistent with prior work, we assume the information related
to model architecture is public to the client and the server. This
information includes number of layers, layer types, layer dimen-
sions, number of bits required to represent the output of nonlinear
layers, and AS computation ring size Z21 . In our factored matrix
multiplication (Section 4.2), the client additionally knows the per-
layer number of unique weight values + but he is not aware of the
distribution of the unique values inside the weight matrices.

Most prior works assume a large bitwidth 1 across all DNN
layers (e.g., 32-bit ring size and activations in [46]). In contrast,
COINN uses smaller bitwidths, e.g., it may use 1 = 16 for the
ring size and 1 = 10 for the output of nonlinear layers. Exposing
the customized 1 at each layer might reveal some information
about the context and/or distribution of the training dataset. It is
unclear whether this information can give additional advantage
to an attacker. In addition, having lower bitwidths may reduce
the computational complexity for extracting the neural network
weights. Let us consider an attacker who launches a brute-force
attack without any prior knowledge. The computation complexity
for such an attack is O(21=), where = is in the order of millions.
Therefore, even with the minimum bitwidth (1 = 1 as in XONN [47])
the attack complexity, i.e., O(2=), is still exponential in =. Similarly,
by knowing the unique size + for factored matrix multiplication,
the attack complexity is O(+=

).
A more knowledgeable adversary might try to employ more

sophisticated attacks such as model extraction [54], model inver-
sion [20], and membership inference [52]. Similar to related work in
oblivious inference [22, 31, 35, 41, 46, 47], COINN does not address
these query-based attack algorithms. Mitigating such attacks is also
an active area of research and in most cases is orthogonal to our
work [1, 12, 47, 51, 58]. Example mitigation strategies include di�er-
ential privacy, rounding the prediction vector, or returning only the
argmax of the prediction to the client. We refer the curious reader
to [47]-Appendix B and [41]-Section 8.2 for more discussions.

4 COINN MODEL CUSTOMIZATION
This section elaborates on COINN methodologies for plaintext
model preparation devised to minimize the secure execution cost
while maintaining inference accuracy.

4.1 Ciphertext-aware Quantization
Most contemporary ML libraries utilize 32-bit� oating-point for-
mat (FP32) for data representation. In practice, the extremely high
computational cost and complex circuits make FP32 unsuitable for
secure computation. Quantization addresses the aforesaid short-
comings by representing data in the integer format with a lower
number of bits. Figure 3 demonstrates how FP32 values can be
converted to low-bit integers through quantization. Let us denote
the signed integer format with 1 bits by INT-b. The mapping of an
FP32 parameter G 5 to its INT-b representation G@ is computed as:

G@ = A>D=3 (B · G 5) , B = 21�1
2 ⇥ max(|G5 |)

(1)

where B is called the scaling factor and max(|G 5 |) denotes the max-
imum range that parameter G 5 can take. In a linear layer with FP32

inputs -5 , weight parameters,5 , and bias b5 , the output can be
approximated using quantized values as:

.5 =,5 · -5 + b5 ⇡
1

BFBG
(,@ · -@ +

BFBG
B1

b@) (2)

where BG , BF , and B1 denote the quantization scales for the input,
layer weights, and the bias, respectively. The quantized version of
.5 is calculated using the corresponding scale B~ as follows:

.@ = A>D=3
⇣

B~
BFBG

(,@ · -@ +
BFBG
B1

b@)
⌘

(3)

Session 12A: Applications and Privacy of ML CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3269

.@ is the quantized output of the linear layer which serves as the
input of the next layer in a quantized DNN. While evaluating Eq. 3
is straightforward in plaintext, multiplication by the quantization
scales B = B~

BFBG
and A>D=3 (·) incur signi�cant costs in ciphertext.

In what follows, we� rst introduce our highly e�cient counterparts
for these operations designed to minimize the secure execution cost.
We then explain how we manage over�ow in the low-bit regime.

Figure 3: Quantizing FP32 values for INT-b representation.

Optimizing Scaling. In our framework, the matrix-multiplication
,@ .-@ as well as the addition with the bias vector are computed
e�ciently via AS. Scaling the result by B =

B~
BFBG

in AS would
increases the overall multiplicative depth for computing B (,@ ·-@ +
b), increasing the AS computation bitwidth, thereby sacri�cing the
overall e�ciency. To avoid bit-extending the matrix-multiplication
operands, we separate scaling and evaluate it using GC ciphers. In
this scenario, for scaling a 1-bit number with a scale containing
1 0 nonzero bits, the GC communication cost would be 21 (1 0 �
1)^. Instead, we enforce the scale values to be powers of 2, which
allows us to implement the previously costly scale operation with
⇠zero cost logical shifts in GC. We do this by replacing the original
formula in Eq. 1 with Eq. 4, and� ne-tuning the DNN to adjust the
quantization and preserve inference accuracy.

B = 2

l
log2

21�1
2 ⇥ max(|G5 |)

m
(4)

Rounding Workaround. Let us consider an =-bit integer value,
right shifted by = �1 bits through the scaling step to obtain a� xed-
point value with 1 bits integer and (= � 1) bits fraction. Rounding
operation in GC works by adding the MSB of the fraction with the
1-bit integer. The GC cost is therefore equal to 21 ⇥ ^, which is
quite signi�cant considering it has to be repeated for all output
elements across all DNN layers. To eliminate this cost, we replace
A>D=3 (·) with the� oor operation b·c in our plaintext DNNs. Since
�ooring is equivalent to removing all fraction bits, it incurs no
GC cost. To adapt the model weights to this modi�cation, we use
the original training data to� ne-tune the model. This is done by
applying� ooring during the forward pass and straight-through
gradients during the backward pass. Data-free� ne-tuning is also
possible at the cost of a small accuracy loss as in [25].
Over�ow Management. Performing matrix-multiplication re-
quires repeatedly updating an accumulator ~ B ~ +w[8]x[8]. An
imminent challenge when moving to the low-bit quantized regime
is the occurrence of over�ow in the accumulator. To avoid over-
�ows, existing ML libraries for quantization perform accumulations
using high-precision data representations, e.g., ~ is INT-32 while G
andF are low-bit. In secure execution, high-precision accumulators
are extremely costly. Therefore, we augment the underlying ML
library with a new custom operation that simulates DNN execu-
tion with low-bit accumulators and directly models the occurrence

of over�ows. This allows us to match the plaintext inference ac-
curacy with the accuracy obtained via low-bit accumulations in
the ciphertext domain. Building upon our customized over�ow
simulation, we provide an automated strategy that� nds the best
allocation of bitwidths across DNN layers to minimize accuracy
degradation, as will be discussed in Section 4.3. We further develop
an over�ow-aware training scheme which enables us to adjust the
model parameters such that the adverse e�ect of over�ow on in-
ference accuracy is minimized. Since over�ow simulation involves
non-di�erentiable operations, we devise an approximate gradient
for this function to allow� ne-tuning of our quantized models. De-
tails of our over�ow simulation and its gradient approximation are
included in Appendix A.

4.2 Factored Matrix-Multiplication
Matrix-multiplication accounts for the bulk of computations in
DNN inference, which leads to a high communication cost in AS.
Our goal in this section is to reduce this cost via factored matrix-
multiplication, which replaces the majority of costly multiplications
with cheaper conditional additions. Below, we introduce the build-
ing blocks of factoredmatrix-multiplication and explain our method
in detail. Later, in Section 5, we present a custom COT-based proto-
col for our factored matrix-multiplication.

Consider a matrix-multiplication of the form . =, · - , where
. 2 R"⇥! ,, 2 R"⇥# , and - 2 R#⇥! . This operation can be
broken down into"⇥! VDPs, where each VDP operates on vectors
of length # , w 2 R# and x 2 R# , corresponding to a row of,
and a column of - , respectively. Each VDP therefore requires #
multiplications and # additions. We propose the factored VDP as
the core operation in factored matrix-multiplication. We start with
the de�nitions of the unique space and the coded representation of
vectors involved in VDP.

De�nition 4.1. The unique space of w 2 R# is the set c =
{21, . . . , 2+ } such that w[8] 2 c (8 8 2 [#]). We refer to + as
the unique size of w.

De�nition 4.2. Given a vector w 2 R# and its unique space
c = {21, . . . , 2+ }, the coded representation ofw is a vector of integer
indices ew 2 [+]

such that w[8] = c[ew[8]].

Knowing the unique space c and the coded representation ew,
the factored VDP can be computed via+ multiplications and # ++
additions: we� rst compute # conditional additions, each of which
adds an input element to one of + accumulators based on its code:

s[E] =
’
G 2SE

G, SE = {x[8] | ew[8] = E} (5)

Next, a VDP is computed between the accumulated values and
the unique space of w, i.e., VDP(x,w) = VDP(s, c). The bene�ts
of factored multiplication are most substantial when + << # 2.
In general, + can be as large as 21 , where 1 is the quantization
bitwidth of w. Even after quantizing w with lower bitwidths, +
can be quite large, e.g., + = 64 for 6-bit weights. To decrease + , we
approximate weight matrices with few representative elements via
clustering [49]. We provide details of the clustering algorithm in

2# is in the order of 100-10000

Session 12A: Applications and Privacy of ML CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3270

Figure 4: Example 4⇥4weightmatrix approximated via clus-
tering with+ = 4. The approximated matrix, can be repre-
sented as a tuple (⇠, e,).

Appendix B. Figure 4 shows an example weight matrix and its ap-
proximation obtained by clustering. The server performs clustering
over plaintext weight matrices and computes c and ew for all DNN
layers. These values are then used in ciphertext execution.

It is worth noting that the value of+ directly a�ects the tradeo�
between the DNN inference accuracy and the secure execution
cost. Higher+ values achieve higher accuracy but also incur higher
secure execution cost. It is a great challenge to determine the per-
layer + values and balance this trade-o� such that the DNN is
executed accurately and e�ciently. To address this challenge, we
provide an automated algorithm that speci�es + for each linear
layer in a desired DNN as will be discussed in Section 4.3. Addition-
ally, we develop custom gradient computation methods to enable
back-propagation through the clustered weights for�ne-tuning
and increasing the inference accuracy. We enclose the details of
gradient computation for factored weight matrices in Appendix B.

4.3 Automated Parameter Con�guration
The quantization bitwidths and the unique spaces across di�erent
layers are not independent and they collectively determine the
model accuracy as well as the secure execution cost. COINN is
equipped with an automated parameter con�gurator that searches
for the optimum number of quantization bits and weight clusters
across DNN layers such that: (1) the secure execution cost is min-
imized and (2) a user-de�ned constraint on inference accuracy is
met. COINN con�gurator initially reduces the optimization space,
and then uses our customized optimizer and score function to�nd
the optimal DNN. The con�gurator performs the above process sep-
arately for quantization and matrix factorization. Below we explain
each component of COINN con�gurator in detail.
Optimization Space Reduction. For quantization, the bitwidths
for the input (18=?), weights (1F), and the activation (1022) should
be con�gured at each linear layer. Finding the optimal quantized
DNN is therefore equivalent to searching over a parameter space
containing ⌫3L di�erent network con�gurations where L and ⌫
denote the number of linear layers and the maximum bitwidth
budget3, respectively. Finding the best parameter con�guration
in such a large space is very time-consuming and the� nal ob-
tained DNN con�guration is often sub-optimal. We observe that
many of the bitwidth con�gurations in this search-space violate
the user-de�ned accuracy constraint. Therefore, prior to�nding
the optimal bitwidths, we� rst identify and eliminate the invalid
bitwidth con�gurations from the search space.
3In our experiments we set ⌫ = 16.

This process is performed on a per-layer basis: for each linear
layer in the network, we discard the subset of its corresponding
quantization bitwidths that violate the accuracy constraint. In doing
so, we keep the remaining layers in full-precision format. Note that
such per-layer analysis allows us to shrink the original search
space but does not determine the optimal bitwidth con�guration
across all layers. This is due to the fact that the per-layer analysis
does not re�ect the e�ect of inter-layer correlations on inference
accuracy when all DNN layers are simultaneously quantized. We
therefore devise an optimizer to search the reduced parameter space
obtained from the per-layer analysis to� nd the optimal bitwidth
con�guration across all layers.

Figure 5: (left) Inference accuracy versus the input and
weight bits of a CONV layer in an example DNN. (right) 3⇡
visualization of the layer’s valid bitwidth con�gurations.

Figure 5-(left) demonstrates the model accuracy versus the input
and weight bitwidths for one layer of an example DNN when the
activation bit is set to the maximum value (1022 = 16). As seen, due
to the occurrence of over�ow, many of the con�gurations fall below
the accuracy constraint plane. Using this intuition, we construct
a 3⇡ mesh of valid bitwidth con�gurations that comply with the
accuracy constraint for each layer as shown in Figure 5-(right). Each
node corresponds to a tuple (18=? ,1F ,1022) and its neighbors are
nodes with a maximum bit distance of 1. As seen in this example,
the search space for one layer is reduced to ⇠

1
8 , which provides a

lot of saving for the overall DNN, i.e., ⇠ (
1
8)

L . Our optimizer then
traverses this mesh to� nd the optimal DNN con�guration.

For clustering, the per-layer con�guration comprises only one
parameter, i.e., the unique size+ , which undergoes a similar process
for identifying the valid optimization space.
Optimizer. We develop a novel genetic algorithm [57] with cus-
tomized graph operations to traverse our constructed mesh of valid
con�gurations and� nd the optimal quantized/clustered DNN. Our
genetic algorithm operates on a population of individuals where
each individual corresponds to a candidate DNN con�guration. Op-
timization is performed iteratively and the population is gradually
evolved to obtain better DNN con�gurations that have higher ac-
curacy and/or lower secure execution cost. At each iteration, all
members of the current population are evaluated in terms of the
secure execution cost and the inference accuracy. We utilize a cus-
tomized score function to combine these two (con�icting) metrics
and assign a measure of optimality to each individual. We then
perform a random selection from the population where individuals
with higher scores have higher chances of being selected. Each
selected individual is then randomly tweaked by moving along the
con�guration mesh to adjacent neighbor nodes. This is equivalent

Session 12A: Applications and Privacy of ML CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3271

to performing small-scale changes in the model architecture to
explore new (unseen) con�gurations and� nd the optimal DNN.
Score Function. The objective of parameter optimization for se-
cure inference is to minimize the secure execution cost while en-
forcing the inference accuracy to be higher than a user-de�ned
threshold (constraint). The objective of this constrained optimiza-
tion can be embedded into a single score function that absorbs
both accuracy and secure execution cost. Let us denote the DNN
con�guration (quantization/clustering parameters) as p 2 R3 and
the corresponding accuracy and secure execution cost as A(p)
and C(p), respectively. For a given DNN con�guration, the secure
execution cost C(p) is the cumulative per-layer costs calculated
using Table 6 in Appendix D and the accuracy A(p) is measured
on a held out validation dataset. We adapt the score function from
ML-customization literature [30], which use fractions and an ex-
ponential penalty function [43] to enforce the inference accuracy
constraint. Our score function is de�ned as:

S(p) = C<0G�C(p)
b (A(p)) , (6)

where C<0G is the execution cost of the reference DNN prior to
optimization. The numerator of the score function encourages mini-
mization of the ciphertext execution cost C(p) and the denominator
b (·) enforces a strict lower bound (threshold) for the accuracy using
exponential penalty methods [7, 43] as follows:

b (A(p)) =

(
A<0G �A(p) A(p) > A<8=

A<0G �A(p) + 4A(p)�A<8= >C⌘4AF8B4
(7)

where A<0G is the accuracy of the reference point DNN. As seen,
b (·) puts a linear penalty on points with a high accuracy but ex-
ponentially increases the penalty when the accuracy drops below
the lower bound A<8= . As we show in our experiments, this score
function ensures that our genetic algorithm� nds a DNN con�gura-
tion that has signi�cantly lower ciphertext cost compared to the
baseline (plaintext) model with comparable accuracy.

Figure 6: Plaintext operations and their equivalent cipher-
text realization in COINN oblivious inference framework.

5 CRYPTOGRAPHIC PROTOCOLS
Figure 6 illustrates operations in plaintext DNNs and their cor-
responding secure computation in COINN framework. The lin-
ear layers – CONV and FC are executed through secure matrix-
multiplication protocols in the AS domain. We provide protocols for
both regular and factored matrix-multiplication for these two linear
layers. We exploit the data repetition inherent in the computation

of matrix products to achieve a signi�cant reduction in the commu-
nication cost. The outputs of the linear operations in the AS domain
are securely converted to the GC domain for computation of the
non-linear layers – maxpool (MP) and ReLU. The scaling operation
is also embedded into the AS to GC (and vice versa) conversion.
Our design is optimized for the amortized setting where the same
server-client pair runs multiple inferences without retraining the
model, which is the common scenario in real-world applications.

Besides the aforementioned layers, COINN also supports batch
normalization (BN) and average pooling (AP). These layers are
fused into their preceding CONV/FC layers. Using this trick, heavy
cryptographic operations such as the division protocol of CrypT-
Flow2 [46] can be avoided, allowing us to evaluate AP and BN at
zero cost. Details of our layer fusion is enclosed in Appendix C.

5.1 Matrix-Multiplication
As explained in Section 3, the weight matrix, is only known by
Alice, i.e., J, K = J, K� and J, K⌫ = 0 while the activation matrix
J- K is shared between Alice and Bob. We need to compute the
matrix product J. K = J, K · J- K = J, K� · J- K� + J, K� · J- K⌫ .
Since Alice can locally compute J, K� · J- K� , we focus on secure
computation of J/K = J, K� · J- K⌫ .
Regular Matrix-Multiplication. The product J/K 2 Z"⇥!

21 of
J, K� 2 Z"⇥#

21 and J- K⌫ 2 Z#⇥!
21 can be computed with "#!

scalar multiplications. This approach requires"#!1 invocation of
COT21 [16], thus incurring a communication cost of"#!1 (^ + 1)

bits. The communication cost of one instance of COT2_ is^+_, where
the� rst term (the cost of one ROT2_) is independent of the message
bitwidth _. Since the computation of thematrix product involves dot
product of each row of J, K� with ! columns of J- K⌫ , we compute
the matrix product with"#1 invocations of COT2!1 . This approach
reduces the number of COTs by increasing the message length,
thereby reducing the total communication cost to "#1 (^ + !1).
Compared to the protocols with independent multiplications [16,
35], the cost is reduced by ! (^+1)

^+!1 . This cost can be further reduced
in the amortized setting as will be explained in Section 5.2.

Factored Matrix-Multiplication. We now present our proto-
col for securely computing the factored matrix-multiplication ex-
plained in Section 4.2. We� rst de�ne the one-hot encoded repre-
sentation of a vector.

De�nition 5.1. Given a vector w 2 R# and its coded representa-
tion ew 2 [+]

w.r.t. its unique space c = {21, . . . , 2+ }, the one-hot
encoded representation of ew is a matrix e, 2 {0, 1}+⇥# such thate, [E,=] = 1 if eF [=] = E and 0 otherwise (8E 2 [+],= 2 [#]).

We will be using the following notations to explain our secure
factored matrix-multiplication:

• The collection of unique spaces for all rows of J, K�:n
JcK(<)

� 2 Z+21

o
<2 ["]

• The collection of one hot encodings of all rows of J, K� w.r.t.
JcK(<)

� :
n
Je, K(<)

� 2 {0, 1}+⇥#
o
<2 ["]

• Partial sum:
n
J(K(<)

� 2 Z+⇥!
21

o
<2 ["]

Session 12A: Applications and Privacy of ML CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3272

Using the above notations, the product J/K = J, K� · J- K⌫ is
computed as:

J(K(<)

� [E,;] =
#’
==1

Je, K(<)

� [E,=] · J- K⌫ [=,;];

8< 2 ["], E 2 [+], ; 2 [!]

(8)

J/K[<,;] =
+’
E=1

JcK(<)

� [E] · J(K(<)
[E,;];

8< 2 ["], ; 2 [!]

(9)

Eq. 8 represents conditional accumulation and Eq. 9 represents
dot product of length + vectors of 1-bit integers. Note that the
number of integer multiplications is reduced from"#! in regular
matrix-multiplication to "+! in the factored version (+ ⌧ #).
The majority of the cost is now incurred by the conditional ac-
cumulation, which is computed through COT. We leverage our
optimization presented for the regular matrix-multiplication, i.e.,
merging the COTmessages involving the same selector bit, for both
Eq. 8 and 9 to reduce the communication cost.

Algorithm 1 presents the protocol for computing the partial
sums through conditional accumulation. Since the protocol requires
"+# COT2!1 , the communication cost of computing the partial
sums is"+# (^ + !1). The dot product of Eq. 9 can then be com-
puted following the technique presented in MiniONN [35] with a
communication cost of "+1 (^ + !1). Thus the total cost of com-
puting factored matrix-multiplication is"+ (# + 1) (^ + !1). Since
in practice, 1 ⌧ # , we approximate the cost as"+# (^ + !1).
Proof Sketch. The security proof of Algorithm 1 directly follows
from the security guarantee of OT. Observe that all the commu-
nication between Alice and Bob is performed through OT which
ensures the privacy of both the selection bits and messages. More-
over, the correlation function chosen by Bob ensures that Alice
never receives an unmasked version of any element of J- K⌫ . Fur-
thermore, every instance of OT involves freshly generated unique
masks that ensures the security of the one-time pad.

5.2 Linear Layers in the Amortized Setting
The mean communication cost of computing both regular and fac-
tored matrix-multiplication is further reduced in the amortized
setting where one server-client pair runs a large number of in-
ferences with the same trained model but di�erent inputs, i.e,,
remains constant while - changes in each inference. In case of reg-
ular matrix-multiplication, since,, does not change, the number
of COTs remains the same while message length increases to �!1,
where � is the number of inferences. The mean cost per matrix-
multiplication is therefore"#1 (^ + �!1)/� ⇡ "#!12 for large � .
Similarly, for factored matrix-multiplication, the mean amortized
cost is "+#!1. More importantly, in this setting, the number of
communication rounds remains constant (= 2), irrespective of the
number of inferences � . Our protocol execution is split into setup,
o�ine and online phases as described below.
Setup Phase. This is performed once per server-client pair irre-
spective of the number of inferences � . In this phase, for regular
matrix-multiplication, Alice and Bob perform the"#1 ROT2� !1 as
part of the "#1 COT2� !1 for matrix-multiplication computation.

In practice, following the state-of-the-art OT libraries [48, 55], Al-
ice receives "#1 ^-bit seeds W@ ;8@ 2 ["#1] and Bob receives
^-bit seeds W0@ and W1@ ;8@ 2 ["#1] which are later expanded to
1-bit messages 89 2 [�], ; 2 [!] through Cryptographically Secure
Pseudo Random Number Generator (CS-PRNG). This makes sure
that the memory requirement is independent of the number of
inferences � . The communication cost of the setup phase is"#1^ .
Similarly, the communication cost of the setup phase for factored
matrix-multiplication is"+ (# + 1)^.
O�line andOnline Phases.These two phases are performed once
per inference 9 . The o�ine and online phases involve computation
before and after the input - is available, respectively. We employ
the technique proposed by Slalom [53], to ensure that most of the
cost corresponds to the o�ine phase. In this technique, in the o�ine
phase, Alice and Bob securely compute the matrix product J/ 0K =
J, K� · J* K⌫ , where J* K⌫ 2 Z#⇥!

21 is a random matrix generated
and known by Bob. They locally expand the seeds obtained in the
setup phase for the particular inference index 9 and for each column
; 2 [!] of - and completes the COT2!1 . The communication cost
of this phase for each 9 2 [�] for regular and factored matrix-
multiplications are"#!12 and"+#!1 respectively. In the online
phase, Bob directly sends � = J- K⌫ � J* K⌫ to Alice who locally
computes J/K� = J/K� + J, K�J�K� . Bob sets J/K⌫ = J/ 0K⌫ . The
communication cost in this phase negligible compared to that of
the o�ine phase.
Number of Communication Rounds. In the proposed setting,
the only communication from Alice to Bob occurs in the setup
phase. The o�ine and online phases involve communication from
Bob to Alice, only. Thus the number of communication rounds is 2,
irrespective of the number of inferences � . This reduces the adverse
e�ect of increased network latency in the Wide Area Network
(WAN) setting.
Switching between Regular and Factored Multiplication.
Based on the optimal unique size allocated to each layer’s weights
by the model con�gurator, our protocol automatically switches
between regular and factored multiplication to maximize e�ciency.
Switching is done when the costs of both multiplications are equal,
i.e.,"#!12 = "+#!1 in the amortized setting, which renders the
switching point 1 = + , i.e., when the number of unique values in
each row of the weight matrix is equal to the AS shares’ bitwidth.

5.3 Non-linear Layers
COINN GC domain incorporates the following four stages:
(i) AS to GC Conversion. A variable JGK 2 Z21 shared between
Alice and Bob through AS is securely converted to its share in the
GC domain by securely computing the addition function through
GC with inputs from Alice, the garbler and Bob, the evaluator as
JGK� and JGK⌫ , respectively. Before the addition, Bob obtains the
Yao share for his input JGK⌫ through COT, which requires two
rounds of communication. In this particular scenario, Bob’s share is
generated through multiplication in the AS domain. According to
the multiplication technique described in Section 2.3, his shares are
independent of his input. Therefore, we perform the COTs for all
the layers in parallel during the o�ine phase, which reduces one
round of communication for each layer in the online phase.

Session 12A: Applications and Privacy of ML CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3273

Algorithm 1: Protocol for Computing Conditional Accumulation

Input : From Alice, one-hot encoding of weight matrix J, K�:
n
Je, K(<)

� 2 {0, 1}+⇥#
o
<2 ["]

Input : From Bob, share of the activation J- K: J- K⌫ 2 Z#⇥!
21 :

Output : Partial sum
n
J(K(<)

2 Z+⇥!
21

o
<2 ["]

OT message received by Alice,
n
` 0 (;) 2 Z"⇥+⇥#

21

o
; 2 [!]

OT message received by Bob,
n
` (;) 2 Z"⇥+⇥#

21

o
; 2 [!]

1 Bob chooses a set of correlation functions i (;)
<,E,= (·) asn

i (;)
<,E,= (`

(;)
[<, E,=])

o
; 2 [!]

=
n
` (;) [<, E,=] + J- K⌫ [=,;]

o
; 2 [!]

;8< 2 ["], E 2 [+],= 2 [#]

2 foreach< 2 ["], E 2 [+],= 2 [#] do
3 Alice and Bob run COT2!1 where

Bob acts as sender with correlation functions
n
i (;)
<,E,= (·)

o
; 2 [!]

and receives
n
` (;) [<, E,=]

o
; 2 [!]

Alice acts as receiver with choice bits Je, K(<)

� [E,=] and receivesn
` 0 (;) [<, E,=]

o
; 2 [!]

=
n
` (;) [<, E,=] + Je, K(<)

� [E,=] · J- K⌫ [=,;]
o
; 2 [!]

4 Alice sets J(K(<)

� [E,;] =
Õ#
==1

⇣
` 0 (;) [<, E,=]

⌘
;8< 2 ["], E 2 [+], ; 2 [!]

Bob sets J(K(<)

⌫ [E,;] =
Õ#
==1

⇣
` (;) [<, E,=]

⌘
;8< 2 ["], E 2 [+], ; 2 [!]

(ii) Scaling.As a result of the optimizations presented in Section 4.1,
scaling is performed through bit shift, which can be evaluated
in GC with no additional communication cost. Scaling converts
the bitwidth of the shared variables from 1 to 18=? , where, 18=?
is the input bitwidth of the next CONV/FC layer. This approach
signi�cantly reduces the GC execution cost for nonlinear layers.
(iii) MaxPool and ReLU. An MP operation with a window size
of : ⇥ : requires :2 � 1 comparison and multiplexing operations,
each of which incurs a communication cost of 2 · ^ · 18=? bits. Note
that MP (ReLU (x))=ReLU (MP (x)), thus we perform MP before
ReLU as it shrinks the size of the activation tensor by a factor of
:2, thereby reducing the ReLU cost. Each ReLU includes 18=? AND

operations requiring 2 · ^ · 18=? bits of communication.
(iv) GC to AS Conversion. For this operation, Alice generates a
random 1-bit integer which is added to the ReLU output and the
sum is revealed to Bob. This operation does not require COT since
there is no input from Bob. During conversion, the values are sign-
extended to 1 bits to match the AS ring size. It is worth noting that
our computations in the AS domain are performed modulo 21 and
the GC circuit for 1-bit addition automatically takes care of the
modulo operation [16]. On the contrary, to bene�t from SIMD oper-
ations in HE, the modulus is chosen as a prime number. Therefore,
the circuit for modular addition requires 1-bit addition, subtraction,
and multiplexing, thereby increasing the cost of HE-GC conver-
sion [31]. In summary, the HE-GC conversion (as seen in [31])
requires ⇠ 2.5⇥ more computation/communication compared to
AS-GC conversion (as seen in [16]).

5.4 Cost Breakdown and Comparison with
Previous Works

To explain the source of runtime improvement in the proposed
method, we summarize the cost complexity of di�erent phases of

Table 1: Cost break down of di�erent phases of linear layers
in COINN and previous works. #B;>C is the number of slots
in vectorized HE operations. ⇠>BC"D;C (@) is the cost of one
scalarmultiplication inZ@ in HE. @ the cipher-textmodulus
which is ⇠ 3⇥ larger than plain-text modulus ? ⇡ 21022 .

Work
Per-layer Complexity

One time setup Per-inference

Gazelle/Delphi/CTF2 (HE) - O
�"#!
#B;>C

�
.⇠>BC"D;C (@)

MiniONN/CTF2 (OT) - O
�
"#1022 (^ + !1022)

�
XONN (GC) - O

�
"#!12022^

�
COINN – regular (OT) O

�
"#1022^

�
O
�
"#!12022

�
COINN – factored (OT) O

�
"+1022^

�
O
�
"+!1022 (# + 1022)

�
execution of the linear layers in COINN and compare them with
prior work in Table 1. For HE-based works, the complexity refers
only to the computation cost. For OT-based works, the complexity
refers to both communication and computation cost while commu-
nication is usually the dominant factor. The number of communi-
cation rounds for all works is equal to the number of layers, except
for XONN which has constant number of rounds. The performance
gains of COINN over prior work stem from two main reasons:
• Separating setup time.We move a large part of the computa-
tion/communication of the (OT-based) linear layers of COINN
to a one-time setup phase without a�ecting security. In contrast,
previous OT-basedmethods (MiniONN [35], CrypTFlow2 [33]) re-
peat these operations for every inference 4. Moreover, separation
of setup and per-inference phases is not readily applicable in the
HE-based methods (Gazelle [31], Delphi [41], CrypTFlow2 [33])
or GC-based methods (XONN [47]).

4The preprocessing phase of Delphi [41] is equivalent to our o�ine phase and needs
to be repeated per inference to ensure security.

Session 12A: Applications and Privacy of ML CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3274

• Optimizing parameters. Prior works use a large but� xed
bitwidth 1022 for all linear layers. COINN customization�nds
smaller values of 1022 that vary from one layer to another, signif-
icantly reducing the secure execution cost while preserving the
accuracy. Additionally, our factored matrix multiplication can
further reduce the execution cost of linear layers when+ < 1022 .
Note that by reducing the computational bitwidth, COINN also
reduces the cost of protocol conversion and nonlinear layers as
formalized in Table 6.

6 RELATEDWORK
In this section, we review the related work that employ similar
settings as ours, i.e., cryptographically secure two-party protocols
where the server owns the model and the client owns the input.
There are two classes of techniques: Homomorphic Encryption
(HE) [21], which is heavy on computation and Multi-Party Com-
putation (MPC) techniques such as Garbled Circuits (GC) [59] and
Arithmetic Sharing (AS) [6], which are heavy on communication.

CryptoNets [23] is perhaps the pioneer of 2-party oblivious in-
ference. More e�cient variants and compilers have since been
proposed for optimized DNN inference [10, 11, 13, 15, 26, 50]. HE-
based methods such as [23] allow outsourcing the majority of the
computations to the more capable party, i.e., the server. However,
frameworks that are entirely based on HE replace the nonlinear
activations with HE-friendly polynomial approximations, resulting
in reduced inference accuracy. Oblivious inference based on GC
has also been proposed [8] which provides better accuracy but
su�ers from long run times due to the large communication cost
of multiplications in GC. To mitigate this, XONN [47] presents a
GC-based framework for Binarized Neural Networks (BNN) where
all multiplications are replaced with cost-free XNOR operations.
Nevertheless, the binary weights and activations in a BNN have an
adverse e�ect on the inference accuracy.

At present, most e�cient secure inference engines employ a
hybrid approach –using the most e�cient cryptographic primitive
for a particular layer. MiniONN [35] employs a combination of
AS, GC, and HE. Follow-up works Gazelle [31] and Delphi [41],
support e�cient HE-based linear operations along with GC-based
nonlinear functions, and perform secure protocol conversion when
necessary [31, 35]. Subsequent works [34, 47] have pointed out
security vulnerabilities in HE-based methods, safeguarding against
whichwould result in increased runtime. CrypTFlow2 [46] proposes
a hybrid protocol that supports both HE and AS-based linear layers
and has custom protocols for secure comparison (used in ReLU and
MP) which incur less communication at the cost of higher number
of communication rounds compared to GC.

A parallel line of work in oblivious inference focuses on applying
optimizations to reduce the secure execution cost of previously pro-
posed security protocols. The contributions in this domain can be
categorized in two separate directions: (1) adjusting the parameters
for the secure protocol, and (2) changing the DNN architecture for
improved secure execution. In the� rst category, recent work [9, 39]
adjust the HE parameters for hybrid HE-GC protocols, i.e., Gazelle
and Delphi, to reduce the secure execution cost. The methods in
the second category [22, 38, 41] reduce the number of ReLU acti-
vations throughout the network to reduce the GC communication
and runtime in hybrid HE/AS and GC protocols.

Perhaps the most related model-adjustment techniques to
COINN are the quantization in [2, 14]. These works have two
major di�erences with COINN quantization. Firstly, they simply
use homogeneous bitwidths for all DNN weights/activations. We
show that by solving the challenging problem of heterogeneous
bitwidth selection, secure execution cost can be signi�cantly low-
ered without hurting model accuracy. Secondly, the aforesaid works
use the available quantization schemes optimized for the plain-
text domain [29, 56], while COINN develops a new cipher domain
optimized quantization scheme that replaces costly quantization
operations with variants that incur a negligible GC cost. For exam-
ple, we leverage logarithmic representation for the quantization
scale in Eq. 4. It is worth mentioning that our quantization is dif-
ferent than [42], which applies logarithmic encoding to the matrix
multiplication operands themselves. By doing so, [42] replaces mul-
tiplications with bit-wise shifts and conditional additions. However,
the ciphertext computation corresponding to bit-wise shift is not
e�ciently realizable in AS. Hence, unlike [42], we use� xed-point
representation for our matrix multiplication operands (layer in-
puts and weights) to keep them consistent with the AS domain.
After multiplication, the result is converted to GC to perform scal-
ing and nonlinear operations. Since bit-wise shifting is free in GC,
we enforce our quantization scale to be a power of two using the
logarithm operation in Eq. 4.

COINN bridges the gap between protocol design and ML model
adjustment to optimize the ciphertext execution of both linear
and non-linear operations. Compared to works that only optimize
the cryptographic protocols [31, 35, 46], the contributions of our
work lie in designing security-aware low-bit quantization and in-
troduction of factored multiplication and its accompanying custom
secure execution protocol. Compared to works that optimize the
ML model [22, 38, 39, 41, 47], our model adjustment techniques
are scalable to many-layer architectures trained for complex tasks
such as ImageNet. Additionally, COINN quantization and factored
multiplication together with our automated parameter con�gurator
achieve a better accuracy-runtime tradeo� compared to prior model
adjustment methods such as modifying ReLU layers [22, 38, 41].

7 EXPERIMENTS
In this section, we empirically evaluate the performance of COINN
in various settings. We perform a detailed study of the e�ciency
gains achieved by each of COINN optimizations, namely, quan-
tization, clustering, and end-to-end parameter con�guration, in
Section 7.1. Next, we provide a side-by-side comparison of COINN
with recent works in Section 7.2, in terms of the ciphertext execu-
tion time, showing 4.7⇥–36.8⇥ faster inference on contemporary
DNNs in LAN setting. We further show that COINN achieves better
performance compared to prior work in the high-latency setting.
Evaluation Setup. We use the PyTorch library for training the
FP32 DNNs and develop our security-aware quantization, cluster-
ing, and automated parameter con�guration with PyTorch backend
for easy utilization by the community. Our ciphertext execution
uses OT, and CS-PRNG implementations from EMP-toolkit [55]
and GC implementation from TinyGarble2 [27]. For fast matrix-
multiplication, we utilize the Intel intrinsic instructions and repre-
sent matrices with the Eigen library [24].

Session 12A: Applications and Privacy of ML CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3275

Table 2: COINN benchmarks.

Model Layers Acc MACs Params

MiniONN [35] 6 CONV, 1 FC, 2MP, 6 ReLU 88.3 6.1e7 1.6e5
ResNet32 31 CONV, 1 FC, 1 AP, 31 ReLU 68.7 6.9e7 4.7e5
ResNet110 109 CONV, 1 FC, 1 AP, 109 ReLU 94.1 2.5e8 1.7e6
ResNet50 49 CONV, 1 FC, 1, MP, 1 AP, 49 ReLU 76.1 4.1e9 2.5e6

We run our ciphertext evaluations using 4 threads on machines
with 2.2 GHz Intel Xeon CPU and 16 GB RAM. For runtime mea-
surements, we consider two real-world network settings, namely
LAN with a throughput of 1.25 GBps, round trip time of 0.25ms,
and WAN with a throughput of 125 MBps, round trip time of 100ms.
We simulate the network settings via Linux Tra�c Control5.
Benchmarks. We perform evaluations on the CIFAR-10, CIFAR-
100, and ImageNet classi�cation benchmarks. The number of classes
in these datasets is 10, 100, and 1000, respectively. Table 2 presents
details of our benchmarked DNNs along with their FP32 accuracy.
We evaluate the 7-layer network fromMiniONN [36] and ResNet110
on CIFAR-10, ResNet32 on CIFAR-100, and ResNet50 on ImageNet
dataset. Our DNN benchmarks cover a wide range of parameter
sizes (0.5M to 23M) and number of MAC operations (60M to 4B)
commonly observed in real-world models.
Accuracy Measurement. Throughout the evaluations, we report
the secure model accuracy, which is measured e�ciently (and cor-
rectly) by simulating ciphertext operations in PyTorch. The correct-
ness is validated by matching all DNN layers’ activations in secure
inference with those from PyTorch on randomly selected inputs.

7.1 Evaluation of COINN Optimizations
In this section, we provide a breakdown of the savings in secure
execution cost as a result of COINN’s model adjustment methods
and protocol optimization.
Low-Bit Heterogeneous Quantization. We illustrate the bene-
�ts of our quantization scheme in reducing the secure communica-
tion cost, while maintaining accuracy, for a large scale real-world
DNN – ResNet32. Figure 7 presents the communication cost and
accuracy of secure execution as a function of the bitwidth. The
numerical labels on the horizontal axis represent homogeneous
quantization (equal bitwidths across all layers), where each label
is 18=? = 1F with 1022 set to 218=? + 1. The label 16 represents the
con�guration implemented in prior works [41, 46] which we use
as a baseline. Figure 7 shows that while reducing the bitwidth in
the homogeneous setting results in a linear reduction of ciphertext
communication, it also results in a signi�cant drop in accuracy.

To mitigate the undesireable accuracy drop of homogeneous
quantization, our automated parameter con�gurator� nds a het-
erogeneous allocation of per-layer bitwidths that simultaneously
ensures high accuracy and low communication cost. The rightmost
label, Q in Figure 7, represents the COINN optimized model with
heterogeneous quantization bitwidths across layers. This optimal
set of bitwidths results in a communication cost equivalent to the
6-bit homogeneous model and achieves an accuracy comparable to
the 16-bit baseline. Such optimization of per-layer bitwidths is made
5https://man7.org/linux/man-pages/man8/tc.8.html

Figure 7: E�ect of quantization bitwidth on communication
cost (bars) and accuracy (curve). The numbers on the hor-
izontal axis show the bitwidth for homogeneous quantiza-
tion of weights/inputs across all layers. Label Q represents
the heterogeneous bitwidths found by COINN.

possible via our secure computation-aware quantization which ac-
curately simulates the e�ect of low-bit quantization in ciphertext.
This allows us to explore the trade-o� between communication
cost and model accuracy. We present the heterogeneous bitwidths
found by COINN con�gurator for ResNet32 in Figure 8-a.
Factored Matrix-Multiplication. Figure 7 shows that the bulk
of total communication cost in a quantized model corresponds to
linear operations. We now showcase how COINN further reduces
this cost via factored matrix-multiplication. Figure 10 presents the
communication cost and accuracy as a function of the number of
unique elements in each layer’s weight matrices + . The label Q
represents our model with heterogeneous quantization bitwidths
from Figure 7. The numeric labels to its left represent models with a
uniform selection of+ across all layers. Such naïve selection results
in accuracy degradation, particularly for small + . Our automated
parameter con�gurator� nds a heterogeneous allocation of+ across
DNN layers that balances the tradeo� between inference accuracy
and ciphertext communication. The result is an optimal DNN repre-
sented with the label Q+C that reduces the secure communication
cost of the quantized model by 1.4⇥ while maintaining the original
model accuracy. We present the heterogeneous number of per-layer
clusters found by our con�gurator for this benchmark in Figure 8-b.

Figure 8:Heterogeneous parameters across ResNet-32 layers
found by COINN con�gurator. (a) Quantization bitwidths.
(b) Number of clusters + .

Session 12A: Applications and Privacy of ML CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3276

Figure 10: E�ect of factored multiplication on inference ac-
curacy and communication cost of linear operations. The la-
bel Q on the horizontal axis shows the baseline quantized
DNN. The numbers to its left represent the homogeneous +
used to cluster all layer weights. The label Q+C stands for
the heterogeneous + con�guration found by COINN.

Holistic Optimization. Figure 9 presents the reduction in commu-
nication cost achieved by applying COINN automated quantization
and clustering on all benchmarks. As our baseline design, we adopt
the bitwidths from prior work [41], i.e., 16-bit inputs/weights and
32-bit activations, and perform regular matrix-multiplication. For
COINN results, we� rst� nd heterogeneous quantization con�g-
urations using our genetic algorithm and� ne-tune the model to
regain accuracy. We show the optimized quantized model via Q on
Figure 9. Next, we use our automated parameter con�gurator to
�nd the weight clusters for each layer and� ne-tune the resulting
model once more to obtainQ+C. The linear operations in theQ and
Q+C are performed via regular and factored Matrix-Multiplication,
respectively. As seen, by� nding the best set of heterogeneous
bitwidths across DNN layers, COINN successfully reduces the se-
cure communication for linear and nonlinear layers by 3.9⇥–4.3⇥
and 1.9⇥–2.2⇥, respectively. By optimizing the weight clusters, we
further improve the e�ciency of linear layers by 4.8⇥–8.1⇥.

Table 3 provides the total runtime and communication cost of
our baseline, Q, and Q+C con�gurations in both LAN and WAN
settings. The evaluation veri�es the e�ect of our optimization on
the runtime: applying Q+C reduces the baseline runtime by 2.6⇥–
3.9⇥ and 2.3⇥–4.2⇥ in LAN and WAN settings, respectively. The
e�ect of COINN optimizations on standalone micro-benchmarks of
the CONV and ReLU is presented in Appendix E.
SetupTime Separation. Finally, we evaluate the e�ect of introduc-
ing the one-time setup phase to reduce the amortized per-inference
cost. The setup phase is only performed the� rst time a connection
is established between the client and server and is independent
of the number of inferences. In the previous section (Table 1), we

Table 3: Evaluation of COINN in LAN and WAN settings. Q
and C denote quantization and clustering, respectively.

Model
Comm. (GB) LAN Time (s) WAN Time (s)

Base Q Q+C Base Q Q+C Base Q Q+C

MiniONN 8.7 2.3 1.0 4.85 1.9 1.45 74.6 26.5 18.5
Res32 10.4 2.4 1.9 9.8 3.8 3.68 143.9 67.1 62.9
Res110 37.6 9.7 6.8 36.0 14.2 14.0 518.1 242.8 226.0
Res50 583.1 148.0 122.0 571.46 165.3 145.7 4994 1420.4 1189.7

showed the complexity of linear layers in the setup and per infer-
ence phases. We now show the e�ect of this optimization through
experimental evaluation. Figure 11 presents the breakdown of setup
time and amortized inference time for each of the four benchmarks
under LAN and WAN settings. As expected, separating the setup
time from oblivious inference signi�cantly reduces the runtime.

Figure 11: Breakdown of setup and amortized times for the
under LAN and WAN settings.

7.2 Comparison with Prior Work
In this section, we compare COINN amortized runtime with the
prior art in oblivious inference. In Table 4, we report the perfor-
mance of COINN along with four contemporary works, namely,
XONN [47] with extremely low-bit (binary) weights/activations,
Delphi [41] with a hybrid HE-GC protocol, SafeNet [38] which
perform ML optimization for Delphi’s secure protocol, and CrypT-
Flow2 [46] which is the current state-of-the-art in oblivious in-
ference. For a fair and accurate comparison, we re-run the open-
source codes provided by Delphi6 and CrypTFlow27 to obtain run-
time/communication measurements on our machines. For the re-
maining works [38, 47], we directly report the numbers from the
original papers since no public code was available.
6https://github.com/mc2-project/delphi
7https://github.com/mpc-msri/EzPC/tree/master/SCI

Figure 9: Communication for baseline and COINN optimized models, where Q represents quantized model and Q+C further
applies clustering to enable factored multiplication.

Session 12A: Applications and Privacy of ML CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3277

Table 4: Performance comparison of COINN with best prior
work. “Improv.” shows the improvement in total runtime.
CTF2 refers to CrypTFlow2 [46].

LAN WAN Acc.
Runtime (s) Improv. Runtime (s) Improv. (%)

M
in
iO
N
N

XONN 33.5 23.1⇥ - - 83.0
Delphi 49.9 34.4⇥ 59.8 3.2⇥ 82.9
SafeNet 53.4 36.8⇥ - - 85.1
CTF2 (HE) 20.8 14.4⇥ 55.4 3.0⇥ 86.0
CTF2 (OT) 11.9 8.2⇥ 108.2 5.8⇥ 86.0
COINN 1.45 1⇥ 18.5 1⇥ 87.6

Re
s3
2

Delphi 88.8 24.0⇥ 145.9 2.3⇥ 65.7
SafeNet 128.0 34.6⇥ - - 67.5
CTF2 (HE) 32.6 8.8⇥ 136.9 2.2⇥ 68.0
CTF2 (OT) 18.7 5.1⇥ 176.7 2.8⇥ 68.0
COINN 3.7 1⇥ 62.9 1⇥ 68.1

Re
s1
10

CTF2 (HE) 110.3 7.8⇥ 448.2 2.0⇥ 94.1
CTF2 (OT) 65.4 4.7⇥ 579.3 2.6⇥ 94.1
COINN 14.0 1⇥ 226.0 1⇥ 93.4

Re
s5
0 CTF2 (HE) 893.2 6.1⇥ 1463.3 1.2⇥ 76.1

CTF2 (OT) 1139.8 7.8⇥ 4241.8 3.6⇥ 76.1
COINN 145.7 1⇥ 1189.7 1⇥ 73.9

Table 4 shows COINN achieves 4.7⇥–36.8⇥ faster ciphertext ex-
ecution in the LAN setting compared to prior work. Even though
in the high latency setting the bene�t margins are smaller, COINN
still outperforms the best methods to date. This is achieved by opti-
mizing both non-linear and linear computations/communications
through quantization and factored multiplication. Furthermore,
COINN achieves 0.6%– 4.7% higher accuracy with 23.1⇥–36.8⇥
faster secure runtime compared to prior crypto/ML co-optimization
work, namely [38, 41, 47].
Evaluation on Large-scale Benchmarks. To fully demonstrate
the e�cacy and scalability of COINN model adjustment techniques
and custom secure protocols, we evaluate two exceptionally com-
plex DNNs, namely, ResNet110 on CIFAR-10 and ResNet50 on Ima-
geNet datasets. The� rst benchmark, i.e., ResNet110, is challenging
due to the extremely high dimensionality of the parameter con�g-
uration space: there are 330 bitwidths and 110 clustering parame-
ters that require per-layer adjustment. The second benchmark, i.e.,
ResNet50, is the largest DNN ever studied in the secure computation
domain with over 4 Billion scalar multiplications and additions.

In Table 4, we present the runtime for the large scale networks
and compare our results with the state-of-the-art CrypTFlow2. In
the LAN setting, COINN achieves 4.7⇥–7.8⇥ and 6.1⇥–7.8⇥ run-
time improvement compared to CrypTFlow2’s OT-based and HE-
based implementations, respectively. In the WAN setting, COINN
achieves 2.6⇥–3.6⇥ and 1.2⇥–2⇥ runtime improvement compared
to CrypTFlow2’s OT-based and HE-based implementations, respec-
tively. It is worth noting that the relatively lower improvement mar-
gin achieved by COINN in one speci�c setting (1.2⇥ for ResNet50,

WAN, HE) is due to the heavy imbalance of the cost towards linear
layers in this particular benchmark.

7.3 Model Customization Runtime
COINN plaintext model customization (Section 4) is a one-time pro-
cess performed on the pre-trained model by the server irrespective
of the number of inference or the number of clients. Table 5 outlines
the runtime of each customization step on one GPU, across various
benchmarks. For better comparison, we normalize the customiza-
tion and� ne-tuning runtimes by the time required for training the
baseline DNN on the same hardware. For� ne-tuning, the num-
ber of� ne-tuning epochs for each model is determined such that
the validation accuracy reaches a convergence plateau. Regarding
model customization, we terminate the genetic algorithm when the
best obtained score does not improve for more than 5 iterations.
Note that COINN customization step enjoys a linear speedup as the
number of GPU cores increases. This is due to the independence of
score evaluations inside a population [30].

Table 5: Runtime of COINN model customization and�ne-
tuning, normalized by the target DNN’s training time on one
NVIDIA Titan XP GPU. Here, Q and C denote the quantiza-
tion and clustering stages, respectively.

Model Training COINN Customization Fine-tuning
(minutes) Steps # iter Runtime # iter Runtime

MinioNN 11.6 Q 30 2.29⇥ 20 0.50⇥
C 20 2.12⇥ 5 0.14⇥

Res32 34.2 Q 20 1.48⇥ 20 0.56⇥
C 30 1.94⇥ 20 0.65⇥

Res110 107.6 Q 30 1.89⇥ 5 0.14⇥
C 30 1.43⇥ 20 0.59⇥

Res50 14,040.0 Q 20 0.05⇥ 5 0.14⇥
C 30 0.16⇥ 2 0.07⇥

8 CONCLUSION AND FUTUREWORK
We present COINN, an oblivious DNN inference framework that
outperforms state of the art in both accuracy and e�ciency.
Through a unique combination of complimentary optimizations in
ML and crypto domains, COINN brings us one step closer to real
life deployment of contemporary DNNs in the privacy-preserving
setting. The enhanced performance of COINN roots in three in-
novations, namely, ciphertext-aware quantization, enhanced data
reuse, and automated parameter con�guration. Our contributions
in the plaintext are accompanied by e�cient custom cryptographic
protocols. We performed rigorous empirical analysis on every step
of our optimization process to demonstrate their e�ect on reducing
the secure communication and oblivious inference runtime. Our
evaluations on practical DNN benchmarks showed an end-to-end
runtime speedup of 4.7⇥–14.4⇥ over the best prior work.

While this paper considers oblivious inference, optimizing obliv-
ious training is an interesting future direction. Our amortized AS-
basedmatrix-multiplication can bene�t linear operations in forward
and backward passes during training. However, remaining chal-
lenges for training include adjusting scales during training, secure
quantization customized for training, and exploring the impact of
model updates on data privacy.

Session 12A: Applications and Privacy of ML CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3278

REFERENCES
[1] Martín Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov,

Kunal Talwar, and Li Zhang. 2016. Deep Learning with Di�erential Privacy. arXiv
preprint arXiv:1607.00133 (2016).

[2] Nitin Agrawal, Ali Shahin Shamsabadi, Matt J Kusner, and Adrià Gascón. 2019.
QUOTIENT: two-party secure neural network training and prediction. In Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security. 1231–1247.

[3] Abdalla Alameen and Ashu Gupta. 2020. Optimization driven deep learning
approach for health monitoring and risk assessment in wireless body sensor
networks. International Journal of Business Data Communications and Networking
(IJBDCN) 16, 1 (2020), 70–93.

[4] Babak Alipanahi, Andrew Delong, Matthew T Weirauch, and Brendan J Frey.
2015. Predicting the sequence speci�cities of DNA-and RNA-binding proteins by
deep learning. Nature biotechnology 33, 8 (2015), 831.

[5] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. 2013.
More e�cient oblivious transfer and extensions for faster secure computation. In
Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security. 535–548.

[6] Mikhail Atallah, Marina Bykova, Jiangtao Li, Keith Frikken, and Mercan Topkara.
2004. Private collaborative forecasting and benchmarking. In Proceedings of the
2004 ACM workshop on Privacy in the electronic society. 103–114.

[7] Thomas Bäck, David B Fogel, and Zbigniew Michalewicz. 1997. Handbook of
evolutionary computation. CRC Press.

[8] Marshall Ball, Brent Carmer, Tal Malkin, Mike Rosulek, and Nichole Schimanski.
2019. Garbled Neural Networks are Practical. IACR Cryptol. ePrint Arch. 2019
(2019), 338.

[9] Song Bian, Masayuki Hiromoto, and Takashi Sato. 2019. DArL: Dynamic param-
eter adjustment for LWE-based secure inference. In 2019 Design, Automation &
Test in Europe Conference & Exhibition (DATE). IEEE, 1739–1744.

[10] Florian Bourse, Michele Minelli, Matthias Minihold, and Pascal Paillier. 2018.
Fast homomorphic evaluation of deep discretized neural networks. In Annual
International Cryptology Conference. Springer, 483–512.

[11] Alon Brutzkus, Ran Gilad-Bachrach, and Oren Elisha. 2019. Low latency privacy
preserving inference. In International Conference on Machine Learning. PMLR,
812–821.

[12] Qingrong Chen, Chong Xiang, Minhui Xue, Bo Li, Nikita Borisov, Dali Kaarfar,
and Haojin Zhu. 2018. Di�erentially private data generative models. arXiv
preprint arXiv:1812.02274 (2018).

[13] Edward Chou, Josh Beal, Daniel Levy, Serena Yeung, Albert Haque, and Li Fei-Fei.
2018. Faster cryptonets: Leveraging sparsity for real-world encrypted inference.
arXiv preprint arXiv:1811.09953 (2018).

[14] Anders Dalskov, Daniel Escudero, and Marcel Keller. 2020. Secure evaluation of
quantized neural networks. Proceedings on Privacy Enhancing Technologies 2020,
4 (2020), 355–375.

[15] Roshan Dathathri, Olli Saarikivi, Hao Chen, Kim Laine, Kristin Lauter, Saeed
Maleki, Madanlal Musuvathi, and Todd Mytkowicz. 2019. CHET: an optimizing
compiler for fully-homomorphic neural-network inferencing. In Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation. 142–156.

[16] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY-A Frame-
work for E�cient Mixed-Protocol Secure Two-Party Computation.. In NDSS. The
Internet Society.

[17] Daniel Escudero, Satrajit Ghosh, Marcel Keller, Rahul Rachuri, and Peter Scholl.
2020. Improved primitives for MPC over mixed arithmetic-binary circuits. In
Annual International Cryptology Conference. Springer, 823–852.

[18] Andre Esteva, Brett Kuprel, Roberto A Novoa, Justin Ko, Susan M Swetter, He-
len M Blau, and Sebastian Thrun. 2017. Dermatologist-level classi�cation of skin
cancer with deep neural networks. Nature 542, 7639 (2017), 115.

[19] Andre Esteva, Alexandre Robicquet, Bharath Ramsundar, Volodymyr Kuleshov,
Mark DePristo, Katherine Chou, Claire Cui, Greg Corrado, Sebastian Thrun, and
Je� Dean. 2019. A guide to deep learning in healthcare. Nature medicine 25, 1
(2019), 24.

[20] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. 2015. Model inversion
attacks that exploit con�dence information and basic countermeasures. In ACM
CCS.

[21] Craig Gentry. 2009. Fully homomorphic encryption using ideal lattices. In Proceed-
ings of the forty-�rst annual ACM symposium on Theory of computing. 169–178.

[22] Zahra Ghodsi, Akshaj Veldanda, Brandon Reagen, and Siddharth Garg. 2020.
Cryptonas: Private inference on a relu budget. In Advances in Neural Information
Processing Systems.

[23] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig,
and John Wernsing. 2016. CryptoNets: Applying Neural Networks to Encrypted
Data with High Throughput and Accuracy. In International Conference onMachine
Learning.

[24] Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.

[25] Matan Haroush, Itay Hubara, Elad Ho�er, and Daniel Soudry. 2020. The knowl-
edge within: Methods for data-free model compression. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 8494–8502.

[26] Ehsan Hesamifard, Hassan Takabi, and Mehdi Ghasemi. 2017. Cryptodl: Deep
neural networks over encrypted data. arXiv preprint arXiv:1711.05189 (2017).

[27] Siam U Hussain, Baiyu Li, Farinaz Koushanfar, and Rosario Cammarota. 2020.
TinyGarble2: Smart, E�cient, and Scalable Yao’s Garble Circuit. InACMWorkshop
on Privacy-Preserving Machine Learning in Practice(PPMLP).

[28] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. 2003. Extending Oblivious
Transfers E�ciently.. In Crypto, Vol. 2729. Springer.

[29] Benoit Jacob, Skirmantas Kligys, Bo Chen,Menglong Zhu,MatthewTang, Andrew
Howard, Hartwig Adam, and Dmitry Kalenichenko. 2018. Quantization and
training of neural networks for e�cient integer-arithmetic-only inference. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2704–2713.

[30] Mojan Javaheripi, Mohammad Samragh, Tara Javidi, and Farinaz Koushanfar.
2020. GeneCAI: gene tic evolution for acquiring c ompact AI. In Proceedings of
the 2020 Genetic and Evolutionary Computation Conference. 350–358.

[31] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. 2018.
{GAZELLE}: A low latency framework for secure neural network inference.
In 27th {USENIX} Security Symposium ({USENIX} Security 18). 1651–1669.

[32] Veton Kepuska and Gamal Bohouta. 2018. Next-generation of virtual personal
assistants (microsoft cortana, apple siri, amazon alexa and google home). In
2018 IEEE 8th Annual Computing and Communication Workshop and Conference
(CCWC). IEEE, 99–103.

[33] Nishant Kumar, Mayank Rathee, Nishanth Chandran, Divya Gupta, Aseem Ras-
togi, and Rahul Sharma. 2020. Crypt�ow: Secure tensor�ow inference. In 2020
IEEE Symposium on Security and Privacy (SP). IEEE, 336–353.

[34] Baiyu Li and Daniele Micciancio. 2020. On the security of homomorphic encryp-
tion on approximate numbers. IACR Cryptol. ePrint Arch 2020 (2020), 1533.

[35] Jian Liu, Mika Juuti, Yao Lu, and Nadarajah Asokan. 2017. Oblivious neural
network predictions via minionn transformations. In SIGSAC Conference on
Computer and Communications Security. ACM, 619–631.

[36] Jian Liu, Mika Juuti, Yao Lu, and N Asokan. 2017. Oblivious Neural Network
Predictions via MiniONN transformations. In CCS. ACM.

[37] Stuart Lloyd. 1982. Least squares quantization in PCM. IEEE transactions on
information theory 28, 2 (1982), 129–137.

[38] Qian Lou, Yilin Shen, Hongxia Jin, and Lei Jiang. 2021. {SAFEN}et: A Secure,
Accurate and Fast Neural Network Inference. In International Conference on
Learning Representations.

[39] Qian Lou, Bian Song, and Lei Jiang. 2020. AutoPrivacy: Automated Layer-wise
Parameter Selection for Secure Neural Network Inference. In Advances in Neural
Information Processing Systems.

[40] Iacopo Masi, Yue Wu, Tal Hassner, and Prem Natarajan. 2018. Deep face recogni-
tion: A survey. In 2018 31st SIBGRAPI conference on graphics, patterns and images
(SIBGRAPI). IEEE, 471–478.

[41] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and
Raluca Ada Popa. 2020. DELPHI: A cryptographic inference service for neural
networks. In 29th {USENIX} Security Symposium ({USENIX} Security 20).

[42] Daisuke Miyashita, Edward H Lee, and Boris Murmann. 2016. Convolu-
tional neural networks using logarithmic data representation. arXiv preprint
arXiv:1603.01025 (2016).

[43] Parwadi Moengin. 2011. Exponential Penalty Methods for Solving Linear Pro-
gramming Problems. In Proceedings of the World Congress on Engineering and
Computer Science, Vol. 2.

[44] Moni Naor and Benny Pinkas. 2005. Computationally secure oblivious transfer.
Journal of Cryptology 18, 1 (2005).

[45] Alvin Rajkomar, Eyal Oren, Kai Chen, Andrew M Dai, Nissan Hajaj, Michaela
Hardt, Peter J Liu, Xiaobing Liu, Jake Marcus, Mimi Sun, et al. 2018. Scalable and
accurate deep learning with electronic health records. npj Digital Medicine 1, 1
(2018), 18.

[46] Deevashwer Rathee, Mayank Rathee, Nishant Kumar, Nishanth Chandran, Divya
Gupta, Aseem Rastogi, and Rahul Sharma. 2020. CrypTFlow2: Practical 2-party
secure inference. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security. 325–342.

[47] M Sadegh Riazi, Mohammad Samragh, Hao Chen, Kim Laine, Kristin E Lauter,
and Farinaz Koushanfar. 2019. XONN: XNOR-based Oblivious Deep Neural
Network Inference.. In USENIX Security.

[48] Peter Rindal. [n. d.]. libOTe: an e�cient, portable, and easy to use Oblivious
Transfer Library. https://github.com/osu-crypto/libOTe.

[49] Mohammad Samragh, Mohammad Ghasemzadeh, and Farinaz Koushanfar. 2017.
Customizing neural networks for e�cient fpga implementation. In 2017 IEEE
25th Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM). IEEE, 85–92.

[50] Amartya Sanyal, Matt Kusner, Adria Gascon, and Varun Kanade. 2018. TAPAS:
Tricks to accelerate (encrypted) prediction as a service. In International Conference
on Machine Learning. PMLR, 4490–4499.

Session 12A: Applications and Privacy of ML CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3279

[51] Reza Shokri and Vitaly Shmatikov. 2015. Privacy-preserving deep learning. In
SIGSAC Conference on Computer and Communications Security. ACM.

[52] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017. Mem-
bership inference attacks against machine learning models. In 2017 IEEE Sympo-
sium on Security and Privacy (SP). IEEE, 3–18.

[53] Florian Tramer and Dan Boneh. 2019. Slalom: Fast, Veri�able and Private Exe-
cution of Neural Networks in Trusted Hardware. In International Conference on
Learning Representations.

[54] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart.
2016. Stealing machine learning models via prediction apis. In 25th {USENIX}
Security Symposium ({USENIX} Security 16). 601–618.

[55] Xiao Wang, Alex J. Malozemo�, and Jonathan Katz. 2016. EMP-toolkit: E�cient
MultiParty computation toolkit. https://github.com/emp-toolkit.

[56] Shuang Wu, Guoqi Li, Feng Chen, and Luping Shi. 2018. Training and Inference
with Integers in Deep Neural Networks. In International Conference on Learning
Representations. https://openreview.net/forum?id=HJGXzmspb

[57] Lingxi Xie and Alan Yuille. 2017. Genetic cnn. arXiv preprint arXiv:1703.01513
(2017).

[58] Ziqi Yang, Bin Shao, Bohan Xuan, Ee-Chien Chang, and Fan Zhang. 2020. Defend-
ing model inversion and membership inference attacks via prediction puri�cation.
arXiv preprint arXiv:2005.03915 (2020).

[59] Andrew Yao. 1986. How to generate and exchange secrets. In Foundations of
Computer Science, 1986., 27th Annual Symposium on.

A OVERFLOWMANAGEMENT
Eq. 10 presents our over�ow simulation, which models the loss of
MSB bits in case of over�ow for an INT-b accumulator.

>E4A 5 ;>F (G)
G>0

=

(
G <>3 21 , (G <>3 21) < 21�1

G <>3 21 � 21 , >C⌘4AF8B4

>E4A 5 ;>F (G)
G<0

=

(
G <>3 21 , (G <>3 21) � �21�1

G <>3 21 + 21 , >C⌘4AF8B4

(10)

Here,<>3 represents the modulo operation and G <>3 21 checks
for the occurrence of an over�ow. In the forward pass (during DNN
inference or training), the above operation is applied on all layer
outputs to account for the occurrence of over�ow according to the
secure execution bitwidth. By leveraging the proposed over�ow
simulation, we accurately measure the secure execution accuracy
in the presence of (occasional) over�ows. This, in turn, allows us to
�nd the best bitwidths throughout the network that strike a good
balance between over�ow, accuracy, and secure execution cost.
Additionally, we provide a� ne-tuning methodology that further
compensates the reduced inference accuracy caused by over�ows
as explained in the following.
Gradients for Over�ow. To enable� ne-tuning of models that
include our over�ow simulation in their computation graph (see
Eq. 10), we provide a smooth approximation for the gradients of
over�ow. Let G be a scalar value, G denote its value after over�ow,
and rG be the gradient of the training loss function with respect to
G . We compute the gradient with respect to G as follows:

rG =

(
rG 8 5 G = G

0 >C⌘4AF8B4
(11)

B CLUSTERING
Here we provide details on the clustering algorithm that reduces the
unique size of weight matrices. Given a vectorized weight matrix
w 2 R# and a given unique size+ , we aim to� nd the unique space
c 2 R+ and the coded representation ew 2 {1, . . . , +}# that solve
the following optimization:

min
c,ew

#’
8=1

(c[ew[8]]� w[8])2 (12)

We use Lloyd’s K-means algorithm [37] to� nd the solution to the
above optimization. It starts with a random set for c and sets ew[8]
to the index of the value in the unique space that is closest to w[8]:

ew[8] = 0A6min
9 2{1,...,+ }

|w[8] � c[9] |, 88 2 {1, . . . ,# } (13)

Next, the elements of the unique space are updated as follows:

c[9] = 0E4A064 ({w[8] |ew[8] = 9}), 89 2 {1, . . . , +} (14)

By repeating 13 and 14, the unique space and the coded represen-
tation are computed. For each DNN layer, we run the K-means
algorithm on the weights with di�erent + and pre-compute the
unique space and coded values. During the automated design ex-
ploration (Section 4.3), we use these pre-computed values to cluster
the weights of DNN layers.

Session 12A: Applications and Privacy of ML CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3280

Table 6: COINN secure execution cost for core operations in a DNN. Here, ^ is the security parameter that is set to 128.

inputdim
operation
��������! outputdim Ciphertext Cost Parameters

Mat-Mult -#⇥!
,"⇥#
������! ."⇥!

regular "#!12022 1022 : accumulator bitwidth
+ : unique size of,factored "+!1022 (# + 1022 + 1)

MaxPool -⇠⇥⇡1⇥⇡1
:⇥:
���! .⇠⇥⇡2⇥⇡2 4^⇠⇡2⇡2 (:2 � 1)18=?

18=? : next layer input bitwidth
: : window size

ReLU -⇠⇥⇡1⇥⇡1
>0
��! .⇠⇥⇡1⇥⇡1 2^⇠⇡1⇡118=? 18=? : next layer input bitwidth

AS! GC -⇠⇥⇡1⇥⇡1

1022!18=?
���������! .⇠⇥⇡1⇥⇡1 5^⇠⇡1⇡11022 1022 : accumulator bitwidth

GC! AS -⇠⇥⇡1⇥⇡1

18=?!1022
���������! .⇠⇥⇡1⇥⇡1 3^⇠⇡1⇡118=?

18=? : next layer input bitwidth
1022 : accumulator bitwidth

Fine-tuning Clustered Parameters. Let w be a weight vector, c
denote the set of cluster centers, andw be its approximated version
after clustering. During forward propagation, w is computed based
on w and c, then it is used to perform CONV and FC. During
backward propagation, w and c are updated. Since clustering is a
non-di�erentiable operation, we need to approximate its gradient
computation to enable� ne-tuning. Let rw be the gradient of the
training loss function with respect to the approximated value. We
compute the gradient with respect to w as rw = m

«
rw where«

denotes element-wise multiplication andm is de�ned as follows:

m[8] =

(
1 8 5 <8=(c) < w[8] < <0G (c)
0 >C⌘4AF8B4

(15)

Let � 9 = {8 |ew[8] = 9} be the set of indices wherew is approximated
via c[9]. The gradient with respect to c[9], i.e., the 9-th element of
the unique space, is computed as:

rc [9] =
’
82� 9

rw [8] ·
1
|� 9 |

(16)

C LAYER FUSION
Batch Normalization. Recall that BN operates on the output of
its preceding CONV layer, i.e., . 2 R"⇥! , It multiplies each row
by U8 and adds V8 to the result. Naïve implementation of the BN
would treat this layer independently which incurs a non-negligible
secure execution cost. Instead, we fuse the BN operation into the
preceding CONV layer so that the combination of CONV +BN can
be realized via a single matrix-multiplication. The 8-th row of . is
originally computed in the precedingCONV layer as y8 = w8 ·- +b8 .
Application of BN on this row vector renders:

⌫# (.8) = U8y8 + V8 = U8 (w8 · - + b8) + V8
= U8w8 · - + U8b8 + V8

(17)

We thus remove the BN layer and set the preceding CONV’s weight
matrix rows to U8w8 and bias values to U8b8 + V8 .
Average Pooling. Average pooling works by computing the sum
over :⇥: windows of convolution outputs and dividing the summa-
tion result by :2. Prior work [46] implements an additional protocol
to securely evaluate the division at an extra cost. In contrast, we
propose to fuse the AP with a linear layer in the plaintext model
to remove its overhead. Similar to the fusion of BN, we can avoid
division by :2 by dividing the weight and bias of the preceding
CONV/FC layer by :2, and computing the sum instead of average
values in the pooling layer. In our setting, we perform average pool
layers with zero cost in AS as summation is free in this protocol.

D CIPHERTEXT COMMUNICATION COST
Table 6 summarizes the communication cost associated with dif-
ferent ciphertext operations described in Section 5. These cost are
incorporated into our automated design customization tool pre-
sented in Section 4.3. Note that for the linear layers, we report the
amortized costs (see Section 5.2).

Table 7: Evaluation on convolution layers of COINN with
regular matrix multiplication

Input Kernal LAN WAN
⇠ ⇥ � ⇥, # ⇥ � ⇥ � 1 = 8 1 = 16 1 = 32 1 = 8 1 = 16 1 = 32
16 ⇥ 32 ⇥ 32 16 ⇥ 3 ⇥ 3 0.021 0.073 0.317 0.703 1.217 3.557
32 ⇥ 16 ⇥ 16 32 ⇥ 3 ⇥ 3 0.021 0.071 0.284 0.711 1.202 3.350
64 ⇥ 8 ⇥ 8 64 ⇥ 3 ⇥ 3 0.027 0.070 0.268 0.703 1.220 3.139

Table 8: Evaluation on convolution layers of COINN with
factored matrix multiplication, 1 = 16

Input Kernal LAN WAN
⇠ ⇥ � ⇥, # ⇥ � ⇥ � + = 8 + = 12 + = 16 + = 8 + = 12 + = 16
16 ⇥ 32 ⇥ 32 16 ⇥ 3 ⇥ 3 0.039 0.056 0.073 0.902 1.107 1.217
32 ⇥ 16 ⇥ 16 32 ⇥ 3 ⇥ 3 0.037 0.054 0.073 0.810 1.011 1.203
64 ⇥ 8 ⇥ 8 64 ⇥ 3 ⇥ 3 0.038 0.053 0.071 0.812 1.013 1.227

Table 9: Evaluation on ReLU of COINN (including AS-GC
conversions)

Input LAN WAN
⇠ ⇥ � ⇥, 1 = 8 1 = 16 1 = 32 1 = 8 1 = 16 1 = 32
16 ⇥ 32 ⇥ 32 0.063 0.084 0.116 1.581 1.645 1.664
32 ⇥ 16 ⇥ 16 0.053 0.058 0.062 1.019 1.130 1.232
64 ⇥ 8 ⇥ 8 0.018 0.025 0.033 0.413 0.421 0.432

E EVALUATION ON MICROBENCHMARKS
We present the evaluation results on standalone linear and nonlin-
ear layers of COINN in tables 7, 8, and 9. Observe that the run-time
for the convolution layers with regular matrix-multiplication in-
creases quadratically with the bitwidth 1. The quantization and
automated parameter con�gurator of COINN thus greatly enhance
the performance by minimizing the bitwidths. The run-time of con-
volution layers with factored multiplication increases linearly with
the number of unique elements, +m and becomes equal to that of
regular matrix-multiplication when + = 1. This is consistent with
the analysis in Section 5.2. Table 9 shows the run-time of combined
AS to GC, ReLU, and GC-AS operations. As expected, the run-time
increases linearly with 1.

Session 12A: Applications and Privacy of ML CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

3281

 HistoryItem_V1
 AddMaskingTape

 Range: From page 1 to page 1
 Mask co-ordinates: Horizontal, vertical offset 46.10, 75.42 Width 254.79 Height 86.33 points
 Origin: bottom left

 1
 0
 BL

 1
 SubDoc
 1

 CurrentAVDoc

 46.096 75.4161 254.7854 86.3253

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 16
 0
 1

 1

 HistoryList_V1
 qi2base

