CryptoML: Secure Outsourcing of Big Data Machine
Learning Applications

Azalia Mirhoseini, Ahmad-Reza Sadeghi, and Farinaz Koushanfar
azalia@rice.edu, ahmad.sadeghi@trust.cased.de, and farinaz@ucsd.edu

ABSTRACT

We present CryptoML, the first practical framework for
provably secure and efficient delegation of a wide range of
contemporary matrix-based machine learning (ML) applica-
tions on massive datasets. In CryptoML a delegating client
with memory and computational resource constraints wishes
to assign the storage and ML-related computations to the
cloud servers, while preserving the privacy of its data. We
first suggest the dominant components of delegation perfor-
mance cost, and create a matrix sketching technique that
aims at minimizing the cost by data pre-processing. We
then propose a novel interactive delegation protocol based
on the provably secure Shamir’s secret sharing. We demon-
strate how the proposed protocol can be customized for our
new sketching technique to maximize the client’s resource
efficiency. CryptoML shows a new trade-off between the
efficiency of secure delegation and the accuracy of the ML
task. Proof of concept evaluations corroborate applicability
of CryptoML to datasets with billions of non-zero records.

1. INTRODUCTION

Machine learning (ML) is an indispensable tool for ex-
tracting knowledge from contemporary massive datasets.
While complex ML algorithms can serve a significant num-
ber of applications, it is well-known that they incur expen-
sive matrix-based storing and computing as well as itera-
tive optimization costs. Examples of such costly ML ap-
proaches are the widely popular decent-based algorithms
such as deep learning [7], Ridge, Elastic Nets, and Lasso
[21], power method [11], and support vector machines [10].
For resource-limited clients, an increasingly popular prac-
tice is to delegate the required storage and computations of
ML algorithms to cloud server providers (CSPs). This prac-
tice raises critical privacy concerns, since ML applications
typically involve sensitive personal, medical, and financial
records.

We introduce CryptoML, a new framework for secure del-
egation of generic iterative, matrix-based ML algorithms
from resource-constrained clients to CSPs. For instance,
consider a scenario where a health clinic wants to utilize the
cloud power to detect and predict tumor propagation trends
among patients by holistically analyzing their private diag-
nostic images. Such problems require complex iterative ML
updates on large data dependency matrices. While secure
task delegation has been an active research subject in recent
years, privacy-preserving ML with provable security has only
been addressed for specific applications such as classifica-
tion [5], Ridge regression [19], genome mapping [6], and/or
for clients capable of performing costly cryptographic proto-
cols such as fully homomorphic encryption (FHE) [13], and
Garbled Circuits (GC) [22]. Real implementation of such
approaches to datasets with billions of records has not been
feasible. More generic secure ML delegation methods such
as [15] are not scalable to large datasets.

CryptoML’s delegation is designed to minimize the client’s
incurred cost, both in terms of its local and remote used re-

sources while preserving the privacy of the data and the
solution to ML problem. We exploit the fact that many ML
applications are tolerant to output solution variations and
suggest creating an approximate compact representation of
data a.k.a., a sketch matriz. Our sketching algorithm is de-
signed to greatly reduce the client’s delegation cost. Form-
ing the sketch is a precursor to the execution of the ML
algorithm. The (pre-processing) cost of building and updat-
ing the sketch is readily amortized over several runs of the
iterative ML updates.

The CryptoML delegation of the client’s data and com-
puting to the cloud is provably secure in the classic honest
but curious security model, guaranteeing privacy of data and
parameters of the ML algorithm as well as the results. The
approach is practically efficient and does not rely on ex-
pensive cryptographic primitives such as FHE, GC or even
public-key-cryptography. The building block of our novel
delegation protocol is Shamir’s secret sharing (SS) [8].

To the best of our knowledge, CryptoML is the first to
propose a systematic and provably secure approximate com-
puting approach to enable delegation of generic iterative ML
tasks on large data. Our explicit contributions are as follows.

The first framework for scalable privacy-preserving
delegation of a broad range of complex ML algorithms
with provable security (CryptoML): In our model, a
resource-limited device delegates storage and computation
of the ML algorithm that entails iterative multiplications on
massive and often non-sparse matrices. CryptoML’s delega-
tion can be done with the lowest possible number of CSPs,
where the communication between the client and each CSP
is provably minimal.

A novel Delegation-optimized Sparse Sketching
(DSS): Our sketching approach is scalable and practical
for resource-limited clients. This sketching is a precursor for
ML training phase and its overhead is readily amortized over
the intensive runs of the iterative ML method. The sketch is
formed as an ensemble of lower dimensional subspaces with
sparsified inter-subspace connections. The aim of DSS is to
minimize the overall delegation cost in terms of stored and
communicated words, as well as floating point operations
(FLOPs). As such, the proposed sketching can be utilized
outside of our framework for other privacy-preserving pro-
tocols including but not limited to GC or FHE.

Proof of concept evaluations of CryptoML on massive
datasets as well as quantitative performance analysis:
We evaluate CryptoML on various datasets for the Principle
Component Analysis (PCA) application — the building block
for several learning applications. CryptoML introduces a
new trade-off between the efficiency and desirable accuracy
of the ML algorithm which is of interest in contemporary
approximate computing paradigms. To our knowledge, our
evaluations are the first to show provably secure delegation
of sophisticated iterative ML algorithms on massive content
with billions of records.

2. CryptoML’S OVERVIEW

Phase 1: Sketching at Client

CL)(N

Phase 2: Iterative ML Delegation

Es[C] H
S

Client CSPs
Solution X

Interactive
Protocol

Figure 1: Overview of CryptoML.

The overall flow of CryptoML is shown in Figure 1. We
denote the large M X N matrix on which we run the ML
algorithm as A, where M is the dimension of a signal and NV
is the total number of samples being processed, which can
be arbitrarily large. CryptoML consists of two phases: pre-
processing and execution. During the pre-processing phase,
the client applies DSS, our novel resource-efficient sketching
approach to transform A to a compact dictionary matriz D
and a sparse coefficient matrix C. The sketching can be
customized to minimize the target delegation performance
costs. The client keeps D locally and delegates encrypted
shares of C, i.e., Ess(C), to CSPs. DSS requires a fixed lim-
ited memory on the client. During the secure ML delegation
phase, client uses an interactive secure protocol to outsource
computations on the large matrix C' to the CSPs.

Design Goals. CryptoML’s design satisfies the following
goals: (i) Approximate computing: Our design takes advan-
tage of the flexibility of ML algorithms in handling variations
in solution to gain runtime, energy, and memory efficiency.
For a given user-defined approximation error, the computa-
tional workload is reduced to the limits imposed by the data
sketch. (ii) Resource Awareness: Our design assigns the ma-
jority of memory and computational workload to the power-
ful CSPs. As such, during processing the ML algorithm, the
client’s memory and computational workload is limited to
O(N) as opposed to O(MN). (iii) Privacy Preserving: Our
design protects the privacy of the client’s data. The original
large database and the solution to the ML problem are not
revealed to the CSPs.

Attacker and Security Model. We focus on a
resource-constrained client and N, independent CSPs:
CSPy,...,CSPy,, where client has a separate personal user
account with each CSP. The client authenticates itself to
each independent server before uploading or downloading
data. This model describes the capabilities provided by the
existing CSPs, such as Microsoft Azure and Amazon Elastic
Compute Clouds. Our protocol is suitable for the honest but
curious threat model where the CSPs perform the compu-
tation correctly but may attempt to infer information from
the delegated data or computations. Security of our pro-
tocol can then be guaranteed even when the adversary has
unbounded computing power. In our setting, the CSPs are
not required to communicate with each other. Our main
tool to build the secure outsourcing protocol is Shamir’s se-
cret sharing that is based on polynomials over a fixed finite
field (denoted by K here) [8]. A value s € K is shared by
choosing a random polynomial Ps(X) € K[X] of degree at
most ¢ such that Ps(0) = s. The share s; = Ps(j) is then
sent privately to player j. It is well known that any set of
t or fewer shares contain no information about s, and s can
be reconstructed from any ¢ + 1 or more shares.

Target ML Algorithms. The key to many important
ML algorithms is exploring the dependency between various

data points. In particular, the pairwise correlation (Gram)
matrix of variables or signals, computed with G = AT A, is
widely used for representing dependencies. Using the Gram
matrix, most learning algorithms iteratively update a vec-
tor of unknown parameters until they converge to a solution.
Each update process requires matrix multiplications in the
form of Gz = AT Az, where z is the unknown parameter vec-
tor. Big data ML analysis, often performed on distributed
processors, incur a high computational and communication
cost because of iterative multiplications on large matrices.
Due to their universal applicability, CryptoML targets iter-
ative algorithms that operate on massive and dense (non-
sparse) Gram matrices. For our evaluations, we use power
method to solve PCA, which has a variety of applications in
image processing, visualization, and pattern recognition [16,
12].

3. CryptoML’S DATA SKETCHING

We introduce DSS, our proposed sketching approach
that reduces the computation workload by producing low-
dimensional and sparse factors. We exploit the well-known
fact that many learning applications are tolerant to output
solution variations, offering the opportunity to trade exact
solutions with improvement in resource cost [9, 14]. More
formally, for a given sketch approximation error €, DSS seeks
to find a suitable dictionary matrix D and a sparse coeffi-
cient matrix C such that:

min ||Cllo s.t. ||A— DC|r < €¢||A|lF, (1)

where D is M x L, C'is L x N, and L < M is the re-
duced dimension; ||C||o is the total number of non-zeros in
C or nnz(C), and || - || is the Frobenius norm. We are
interested in reducing nnz(C) as each non-zero element in
C' incurs memory access, FLOPs, and communication over-
head, which adversely affects the performance. Parameter L
contributes to communication cost and can be specified by
the client. The optimally minimum value for L to achieve
a desired approximation error can be found via a heuristic
divide and conquer method. In Section 4, we formally quan-
tify our delegation protocol’s performance cost and discuss
how a client can use this quantification to customize the
sketch with respect to the underlying resource limitations.
D is often much smaller than A (i.e., ML <« MN), since
the number of signals N in big data applications can be
arbitrary large. Our results show that for real-world appli-
cations, and within guaranteed user-defined approximation
errors, D consumes up to two orders of magnitude less mem-
ory than A.

Algorithm 1 demonstrates CryptoML’s sketching. First
the dictionary D is created by sub-sampling columns of A
uniformly at random (Steps 1-2). Once D is created, Equa-
tion 1 becomes equivalent to a generic sparse approximation
problem; each column ¢; of C' is a sparse approximation of
the column a; of A with respect to D and the user-specified
projection error e. We adopt Matching Pursuit (MP) which
is a greedy sparse approximation routine [20] that iteratively
selects the highest correlated columns in the dictionary to
the signal (Step 3). Each iteration produces a non-zero co-
efficient in ¢;. MP stops either when the error tolerance
criteria is met, or when a pre-specified number of iterations
(denoted by K in Algorithm 1) is passed.

Note that sparse sketching methods such as [9, 17] which
offer tight guarantees for sparsity can also be used within
CryptoML, however, DSS benefits from a lower complexity
which is essential for a constrained client. In our evalua-

Algorithm 1 : DSS

Input: Normalized data matrix A € RM*Y approxima-
tion error tolerance €, number of columns in dictionary
L, and (optional) maximum number of non-zeros per C
column K (otherwise K = L).

Output: A sparse matrix C € RE*YN and a dictionary
D € RM*L such that |4 — DC||r < e||A|lr.

1. Client creates a random subset of in dices of size L
denoted by I,
2. Client creates D = A(:, IL).

3. Client applies Matching Pursuit to solve a; = Dc; for
the approximation error e:

tions, we show how moderate increasing of € produces a more
compact output, resulting in further reduction in resource-
consumption on both the client and server side.
Complexity Analysis. Algorithm 1 is highly efficient and
hence suitable for a resource-limited client. The main com-
puting task is executing MP sparse coding routine. Since
each column of C' is created independently, this algorithm
is highly parallel. The computational complexity for com-
puting a column of C' is O(LMK). As we show in our ex-
periments, L (and subsequently K as K < L) can be up
two orders of magnitude lower than M within reasonable
approximation errors. The infrequent pre-processing cost
is quickly paid off due to the savings in the overall cost of
secure iterative Gram matrix based updates.

4. CryptoML’S DELEGATION

We propose CryptoML’s customized and resource-aware
protocol for secure and effective delegation of ML computa-
tions. Our protocol takes advantage of the iterative nature
of target ML algorithms. In the following we discuss secret-
sharing, the building block of our secure protocol, and pro-
vide its ML-specific analysis, which leads to determining the
minimum number of participating CSPs required for secret-
sharing. Given this minimum number, we propose a delega-
tion protocol that incurs the provably minimum communi-
cation overhead between the client and CSPs while simulta-
neously reducing the overall cost of secure ML execution in
terms of runtime, energy, and memory usage.

4.1 Secret Sharing in CryptoML

In our protocol, we are interested in offloading massive
matrix multiplications to CSPs using Shamir’s model. Re-
call that the complexity of iterative ML algorithms arise
from large matrix multiplications. To get the multiplication
result of two matrices using secret sharing, if elements of
each matrix are encoded with a degree t polynomial, the
result would be a degree 2t polynomial. Thus, to recover
the matrix product, 2t + 1 shares of each matrix are needed.
In the following, we first identify a bound on the minimum
number of required CSPs. Given this bound, we design a
protocol that provably reaches the minimum communication
overhead between the client and CSPs. We demonstrate that
our communication-minimizing design also results in mini-
mized overall ML execution cost.

Proposition 1. Consider a scenario where a client aims
to outsource the multiplication of 2 or more matrices using
Shamir’s SS. In this case, the minimum number of required
CSPs (such that not all of them collude) is 3.

Proof. According to Shamir’s scheme, in order to secret
share the multiplication of two values, each encoded with a
degree t polynomial, 2t 4+ 1 shares are needed. If less than 3

CSPs are used, at least one CSP receives more than ¢ shares,
violating the condition for secrecy.

Based on proposition 1, to securely outsource a Gram ma-
trix based update AT Az using Shamir’s scheme, at least 3
CSPs such that not all of them collude are required. B
Proposition 2. Consider a scenario where a client aims
to compute the multiplication of n matrices, i.e., Z =
[I,<i<, Zs, using Shamir’s SS for secure delegation. If the
client desires to limit its interactions with the CSPs to only
once, i.e., a one-time offloading of shares and a one-time
reception of results from the CSPs, at least n + 1 (not-all
colluding) CSPs are required.

Proof. Assume that each matrix Z; is secret shared using
a polynomial of degree t;. We denote the minimum number
of CSPs by ns. Then:

< min ;. (2)

(mini<i<n ti)n < Di<icntit1
N N = 1<i<n

The left-side inequality holds by definition. We show that
the right-side equality is also true. For now, let us con-
sider a case where the client asks each CSP to contribute
in multiplication of all Z; (1 < ¢ < n) matrices, i.e., each
CSP holds shares from all the Z;s. The client has to out-
source y ;. .,(t:) + 1 shares to be able to recover prod-
uct matrix Z, however, none of the CSPs can have more
than 4min = mini<;<n, t; shares. Otherwise, according to
Shamir’s SS, they can recover matrix Z;, ,,, . Thus, the in-
equality holds. From the inequalities, and since ns and n
must be integer values, we conclude that ns > n + 1.

Now consider another case where the client sends shares of
a subset of matrices to each CSP, say shares of Z1,...,Z; to
some and Zj41, ..., Z, to others. In this case Z is computed
as Z = ([I1<;<; Zi)(II; 1<i<n Zi)- Due to the limit on the
number of interactions between the client and CSPs, the
problem becomes an instance of the previous case: At least
(J+1)+(n—j+1) = n+ 2 distinct CSPs are required.
Similarly, it can be shown that breaking the product into
more sub-products increases the number of required CSPs.
Thus, Proposition 2 holds. B

In an iterative ML algorithm each iteration requires an
update of the form AT Az, which is a product of 3 matri-
ces. Thus, if we limit the number of per iteration interac-
tions between each CSP and client to only once, at least 4
(not-all colluding) CSPs are required. Therefore, to securely
outsource a Gram matrix based update with the minimum
number of CSPs (i.e., 3) the number of per iteration inter-
actions between the CSP and client has to be more than
one.

4.2 Resource-Optimized Delegation

Algorithm 2 outlines our 3-CSP communication-
minimizing sketch delegation protocol. Instead of secret
sharing the original matrix A, the sparse coefficient matrix
C is outsourced. The computations associated with the
limited-size dictionary matrix D is done on the client
(Step 3). The communication in this protocol is limited to
2N (2t + 1) + 2L(2t + 1) per iteration.

The pre-processing results in a lower dimensional and
spasre coefficient matrix C'. Since each element in matrix
C' contributes to the cost associated with communication,
computation, and memory access, to achieve performance
efficiency, we limit the computation and secret sharing in
Algorithm 2 to the non-zero elements of C and ignore the
zero values. Ome can obfuscate the location of non-zero
elements by randomly permuting rows and columns of C.

Algorithm 2 : Secure Delegation of Iterative Analy-
sis on Sketch.

Input: Vector xnx1 and sketch matrices Darxr and
CrLxnN.
Output: CT'DTDCx.

0. Client encodes C' with degree ¢ polynomials and sends
2t + 1 shares to CSPs.

One Iteration of Gram Matrix Update:

1. Client encodes = with degree ¢ polynomials and sends
2t + 1 shares to CSPs.

2. CSPs compute L x 1 vectors v; = C'z corresponding to
each share and send the 2t + 1 results to client.

3. Client decodes results to find C'z. It then computes
L x 1 vector vy = (DTD)Cx. It encodes v2 with degree ¢
polynomials and sends 2t + 1 shares to CSPs.

4. CSPs compute N x 1 vectors v3 = CT((DTD)Cx)
corresponding to each share and send 2t + 1 results to
client.

5. Client updates x by decoding results to find
cT(DTD)Cx.

If C (M x N) has K non-zeros per column, there are at
least (IL()K! distinct ways to permute rows of C'. Thus, a
brute force attack is computationally intractable for real-
world datasets. Note that even if the location of non-zeros
in C is revealed to the CSPs, such information does not re-
veal anything about the values of non-zero elements. This
is because according to Shamir’s scheme, unless the 3 CSPs
collude, it is impossible to recover a value given the insuffi-
cient number of shares.

4.3 Protocol Performance Quantification

Bounds on Number of FLOPs. The cost of FLOPs
arises from the number of operations required for secret shar-
ing (encryption/decryption) and performing arithmetics to
compute ATAz = CTDTDCx. In general, based on La-
grange interpolation, the cost of encrypting an element with
a polynomial of degree t, is O(t?). In Algorithm 2, given
that the computation is limited to the non-zero elements,
the cost of matrix multiplication on each share, i.e., Steps
2 and 4, becomes equal to the number of non-zeros in C' or
nnz(C). Recall that according to Algorithm 1, each column
of C has at most K non-zeros, hence nnz(C) = KN. The
matrix multiplication cost of Step 3 is L?.

Bounds on Communication. The cost of communica-
tions arises from sending and receiving data in each step.
Matrix C' is transmitted only once to the CSP, resulting in
communication of KN words, where a word is a unit of data
(i.e., a 64-bit unit). Each non-zero element is stored as a
triple (row-index, column-index, value). In each iteration,
shares of N x 1 vectors z and CT (DT D)Cx, and Lx1 vectors
v1 and vz (as defined in Algorithm 2) are communicated.

Bounds on Memory. Table 1 summarizes the costs of
our privacy-preserving outsourcing protocol. To better un-
derstand the performance improvements achieved by Cryp-
toML, we also provide the costs for the case where the iter-
ative protocol is run on the original data A. The protocol
corresponding to AT Az is achieved by simply replacing C
with A and skipping Step 3 in Algorithm 2. These rows are
marked by w/o CryptoML. Since the number of multiplica-
tions and additions are asymptotically the same, for brevity
we only report the number of multiplications under FLOPs.

As mentioned in Section 2, we are in the big data regime

where M < N. We will show in our evaluations that for
a variety of real-world datasets L (and subsequently K as
K < L) can be more than an order of magnitude lower than
M. Our protocol not only reduces the client-side compu-
tations, but also it significantly reduces the memory and
computation cost on the CSPs, which results in a higher
overall performance and lower dollar cost.

Given the asymptotic secure delegation cost analysis in
Table 1, a client can customize the sketching parameters
(including L, approximation error €, or sparsity-level K) in
Algorithm 1 to meet the constraints imposed by its resource
limitations. For example, client can reduce parameters K or
L (at the cost of a higher approximation error) to achieve a
desired memory or communication overhead.

4.4 Protocol Properties

CryptoML successfully realizes our crucial design objec-
tive (Section 2), i.e., to delegate the majority of memory
and computation workload to the CSPs. As seen in Ta-
ble 1, for each iteration, the client requires O(t*)(N + M)
and O(t*)(N + L) + L? computation for the original and
the sketch, respectively. Each CSP requires O(t)M N and
O(t)K N, respectively. In our protocol, CSPs only interact
with the client and not with each other; this naturally lowers
the possibility of collusion.

Shamir’s secret sharing requires operations over a finite
field K. The specific nature of our delegation protocol en-
ables efficient ways for processing floating-point data while
benefiting from Shamir’s scheme. Since the CSP compu-
tations are limited to matrix multiplications, the delegated
memory and operations can be readily done in fixed-point
format. After each iteration, the client (if necessary) applies
type conversion on the much more compact (multiplication)
result and executes further (light-weight) ML-specific oper-
ations on it. It then converts back the compact result to
fixed-point and sends it to CSPs for next iteration.

Verification of the results and detection of cheating CSPs
is straightforward in our secure delegation scenario; The
client can at any moment compute the actual element-wise
products on portions of the data locally and compare it
against those received from the CSPs.

5. RELATED WORK

Performing privacy-preserving ML algorithms on the
cloud has been the subject of intensive research in the past
with great progress, e.g., [3, 23, 4, 15, 19, 5]. The avail-
able methods range from solutions relying on fully homo-
morphic encryption (FHE) and Garbled Circuits (GC), to
secret sharing [3], trusted hardware [4] and to secure compil-
ers [23]. However, most earlier works in privacy preserving
ML are inappropriate for small-client cases. Secure ML so-
lutions based on FHE or GCs are still not at the efficiency
level required for our delegation scenario. For example, a re-
cent work GraphSC [18], reported using ORAM and GCs on
GraphLab for iterative matrix updates. In their evaluations,
a single iteration update on a connectivity matrix with 1 mil-
lion non-zeros took more than 13 hours on a powerful server
using 128 AMD Opteron processors. Such performance is
significantly less efficient compared to our work which en-
ables processing of matrices with billions of nonzeros.

Several practical methods for secure delegation of specific
applications have been developed. For example, (privacy-
preserving) large-scale mapping of genomes [6], MapReduce
framework [23], and linear programs [3]. The available solu-
tions are either based on security in a non-standard (weak)
model [3], or they are inapplicable to massive data learn-

Table 1: Computation, communication, and memory costs of performing one iteration of Gram matrix based update. The one-time
costs (Step 0 of protocol) represent the communication overhead of sending data to CSP before iterative updates start. However, the
per-iteration costs (Steps 1-5) are repeated many times until the ML algorithm converges to a solution. CryptoML enables significant
performance improvements as for many real-world datasets K < L < M < N.

Computation (FLOPs) Memory (Words) Communication (Words)
Client CSPs Client CSPs Client-CSPs
One-time w/o CryptoML O(t°)MN O(t)MN O(t)MN
One-time CryptoML O(t°) KN ML O(t) KN O(t) KN
Per-iteration | w/o CryptoML 20(t°)(N + M) 20(t)(MN) O(t)(N + M) O(t)(MN + N + M) 20(t)(N + M)
Per-iteration CryptoML 20(>)(N+ L)+ L? | 20(t)(KN) | O®)(N+ L)+ L | O@#)(KN + N + L) 20(t)(N + L)

ing scenarios that are of interest to our work. For instance,
general parallel programming frameworks such as MapRe-
duce [23] are not suitable for addressing most large-scale
ML problems as dense data dependencies prohibit task par-
allelization that is the basic assumption of the MapReduce
framework. While Shamir’s SS is a widely known and ac-
knowledged method for provably secure computation, we
have not found any work that uses it for secure delegation
of ML algorithms. In fact, [3] is the only relevant work for
delegating computations based on a heuristic approximation
of Shamir’s SS. This work is not concerned with sketching or
iterative ML, updates; it only introduces a new security pro-
tocol for matrix multiplication on single and double server
cases with weak security guarantees.

In summary, little work has been done to address the
generic problem of secure and scalable delegation of com-
plex ML algorithms in practice; prior works either focus on
non-proven secure settings [3] or utilize costly non-scalable
cryptographic operations for a different delegation scenario
[18, 15, 5] (such as multi-party computing). Our protocol
hides the data, model, and the final results from the CSPs.
It is provably secure, and it is the first-ever secure ML del-
egation work that reports complex iterative functions over
datasets with billions of non-zeros in their correlation ma-
trix. One strong point of the our solution is that it covers a
wide range of iterative matrix-based ML algorithms.

6. EXPERIMENTS

To evaluate our work, we answer the following questions:
(i) How does CryptoML protocol improve the overhead in
terms of memory usage, processing time, and communica-
tion, and (ii) What is the impact of introducing different
approximation errors in DSS on accuracy of solutions to the
ML problems for various real applications.
Implementation and API. We implement CryptoML in
C++ using the standard message passing system (MPI).
Data is stored using a 64-bit fixed-point representation, with
20-bit for the fractional part. Our API takes the following
user inputs: Dataset A, sketch error €, and the learning algo-
rithm as an iterative update function on Gram matrix. Our
modular library can be easily used to implement various ML
update functions on top of the Gram matrix multiplication.
All of our evaluations are done on IBM iDataPlex cluster.
Each node in the cluster is an Intel-Xeon-X5660@Q2.80GHz.
We set the client node’s memory to 8GB and each of the 3
server nodes memory to 48G'B. Since the client and server
nodes are on the same network, the packet transmission
time is faster compared to an out-of network communica-
tion setup. However, a slower network only increases the
gap between the (lower) communication overhead in Cryp-
toML, versus the (larger) overhead of baseline. Our results
along with numerical quantifications in Table 1 can be used
to find the overall communication cost for any network delay.

Datasets. Our experiment datasets are shown in the first
row of Table 2; Salina, is derived from hyperspectral imaging

[2], Cancer Cell is derived from MRI medical imaging, and
Light Field is derived from plenoptic cameras [1].

6.1 CryptoML Evaluation

Memory Reduction Capability. We verify the capability
of CryptoML to create low-dimensional and sparse transfor-
mations. Table 2 shows the effect of varying the transfor-
mation approximation error e. The M x N input matrix A
is transformed to an M X L matrix D and a sparse L X N
matrix C, whose average number of non-zeros per column is

K. The memory reduction is computed by %&77(0)’

where nnz(.) measures number of non-zeros. Significant
memory reductions are achieved. For example, for Light
Field data, the reduction is more than 25 folds. Increasing
€ further reduces the memory footprint.

The approximation error in CryptoML can be customized
to meet a given performance budget. Given the data-
dependent transformation results and quantifications in Ta-
ble 1, one can estimate the actual delegation cost in terms
of runtime, memory usage, and communication on the per-
tinent CSP platforms and tune the e accordingly.
Runtime Analysis. We apply CryptoML to real-world
datasets and report the actual measured runtime of the al-
gorithms. In these experiments, all tests are done on IBM
iDataPlex platform where the client node has 4 cores at 8GB
RAM (which emulates a typical portable laptop) and the 3
CSPs each have 32 cores at 48GB RAM. Figure 2 compares
the runtime performance of power method for finding the
first 100 eigenvalues of different datasets. The results show
significant runtime improvement of up to 30x over base-
line, which is the case where we apply the protocol on the
original data A. As it was expected from quantifications in
Table 2, CryptoML achieves runtime improvements for all
datasets over baseline. Our timing results indicate applica-
bility of CryptoML to large-scale problems. To the best of
our knowledge, CryptoML is the first to demonstrate a prac-
tical secure iterative delegation on datasets with billions of
non-zero elements (Light Field data).

b Sdina203x54129 ,10°_ Cancer Cells 1024111296 42107 Light FiEd 18496272320

B aseline]
2 [ows

N
B

Total Time (ms)
s ot
Total Time (ms)

[

||Iﬁ
1 2 4 8
t

Figure 2: Runtime comparison of PCA application for various t’s,
the degree of secret sharing polynomial.

Accuracy Analysis. The bottom row in Table 2 shows the
learning error in finding singular-values. The learning error

9This dataset consists of cancer tumor morphologies col-
lected in MD-Anderson cancer center.

Table 2: CryptoML’s performance evaluation. M X N matrix is transformed to a M X L dictionary matrix and a L X N coefficient

matrix, whose average number of non-zeros per column is K.

M x N Salina 203 x 54129 (87.9MB) | Cancer Cells 1024 x 111296 (911.7MB) | Light Field 18496 x 272320 (40.3GB)
Transformation error | ¢ =0.01 [€=0.05] e=0.1 | ¢=0.01 | €=0.05 e=0.1 €=0.01 | e=0.05 e=0.1
K 148 128 97 889 704 380 780 560 208
L 150 150 100 900 800 650 800 600 600
Memory reduction (x) 1.57 1.37 2.04 1.14 1.28 1.58 25.0 30.7 33.3
Application error 0.0003 0.0003 0.0018 0.0001 0.0004 0.0004 0.00128 | 0.0029 0.0029

is the normalized cumulative error of the first 100 eigenvalues
found by running power method using CryptoML. The base-
line singular values are derived from running power method
on A. A notable observation is that although a higher e can
result in meaningful runtime and memory improvements, it
may not drastically affect the ML solution.

6.2 Discussions

Our evaluations demonstrate the capability of CryptoML
in reducing the cost of immensely expensive ML algorithms
in secure delegation scenarios. For example, consider a con-
figuration set up with a 4-core (8GB) client and three 32-
core (each 48GB) CSPs. For SS of degree ¢ = 8, power
method on a Light Field data with size 18496 x272320 takes
more than 36hrs to converge. CryptoML reduces this to only
slightly more than one hour (Figure 2), while the client’s
one-time pre-processing overhead is less than 31 minutes.
What further makes the pre-processing cost negligible is that
several learning algorithms (e.g., regularized regressions) re-
quire tuning for model selection. This means the learning
algorithms are run several times for finding the best learning
parameters (e.g., regularization variables). The runtime im-
provement also translates to dollar-cost reduction on CSPs.

CryptoML introduces a new paradigm in large scale
privacy-preserving delegation by leveraging approximate
computing. Future directions include developing novel data
transformation schemes as well as improving the interactive
delegation protocol by exploiting other security primitives.
Note that while CryptoML’s security protocol is built based
on Shamir’s secret sharing model, other primitives such as
Garbled Circuits and Homomorphic Encryption can also
take advantage of our approach. In other words, existing
security protocols based on matrix-based analytics can ben-
efit from the reduction in the required memory, FLOPs, and
communication achieved by CryptoML. However, as sug-
gested by recent results [18], performance overhead of those
primitives make them unsuitable to large matrices.

7. ACKNOWLEDGEMENT

This work was supported by ONR (R17460), NSF Trust-
Hub (CNS-1513063), and MURI (FA9550-14-1-0351) grants.

8. CONCLUSION

We propose CryptoML, a novel customizable framework
for secure delegation of iterative ML algorithms to (un-
trusted) cloud servers. We devise a novel secure delega-
tion protocol, based on secret sharing, that takes advantage
of the iterative nature of the underlying ML algorithms to
achieve performance efficiency. CryptoML further increases
system performance by reducing the computational work-
load to an sketch of data. Our protocol delegates the ma-
jority of memory and computational workload to the cloud
while provably minimizing the (cloud-server) communica-
tion overhead. Our work is the first to enable secure dele-
gation of iterative ML algorithms on datasets with billions
of non-zeros. The memory, communication, and workload
overhead reduction achieved in CryptoML is not limited to
a specific data sketching, security primitive, or delegation
scenario and can be readily extended to other secure com-
puting tasks.

9. REFERENCES

[1] Stanford light field archive. lightfield.stanford.edu (2014).

(2] Aviris hyperspectral data. www.ehu.es/ccwintco (2015).

[3] ATaLLAH, M. J., AND FRIKKEN, K. B. Securely outsourcing
linear algebra computations. In AsiaCSS (2010).

[4] Bajaj, S., AND SION, R. Trusteddb: A trusted
hardware-based database with privacy and data
confidentiality. TKDE (2014).

[5] BosTt, R., Popra, R. A., Tu, S., AND GOLDWASSER, S.
Machine learning classification over encrypted data. In
NDSS (2015).

[6] CHEN, Y., PENG, B., WANG, X., AND TANG, H. Large-scale
privacy-preserving mapping of human genomic sequences
on hybrid clouds. In NDSS (2012).

[7] CoatEs, S. sND HuvaL, B., Wang, T., Wu, D.,
CATANZARO, B., AND NG, A. Deep learning with COTS
HPC systems. JCML (2013).

[8] CRAMER, R., AND DAMGARD, I. Secure distributed linear
algebra in a constant number of rounds. In CRYPTO
(2001).

[9] ELHAMIFAR, E., AND VIDAL, R. Sparse subspace clustering:
algorithm, theory, and applications. TPAMI’13.

[10] FERRIs, M. C., AND MUNSON, T. S. Interior-point methods
for massive support vector machines. SIAM J. on
Optimization (2002), 783-804.

[11] FI1GUEIREDO, M., NOowAK, R., AND WRIGHT, S. Gradient
projections for sparse reconstruction: Application to
compressed sensing and other inverse problems. IEEE J.
Select. Top. Signal Processing 1, 4 (2007), 586-597.

[12] FowLkEs, C., BELONGIE, S., CHUNG, F., AND MALIK, J.
Spectral grouping using the nystrom method. TPAMI’04.

[13] GENTRY, C., ET AL. Fully homomorphic encryption using
ideal lattices. In STOC (2009), vol. 9, pp. 169-178.

[14] GITTENS, A., AND MAHONEY, M. Revisiting the nystrom
method for improved large-scale machine learning.
JMLR’13.

[15] GRAEPEL, T., LAUTER, K., AND NAEHRIG, M. Ml
confidential: Machine learning on encrypted data. In
ICISC. 2013.

[16] JOURNEE, M., NESTEROV, Y., RICHTARIK, P., AND
SEPULCHRE, R. Generalized power method for sparse pca.
JMLR (2010).

[17] MirHOSEINI, A., E., D., SONGHORI, E.;, BARANIUK, R., AND
KOUSHANFAR, F. Rankmap: A platform-aware framework
for distributed learning from dense datasets. arXiv
preprint:1503.08169 (2015).

[18] Navak, K., Wang, X. S., IoaNNIDIS, S., WEINSBERG, U.,
TAFT, N., AND SHI, E. GraphSC': Parallel secure
computation made easy. In JEEE S&P (2015).

[19] NIKOLAENKO, V., WEINSBERG, U., IOANNIDIS, S., BONEH,
D., AND TAFT, N. Privacy-preserving ridge regression on
hundreds of millions of records. In IEEE S&P (2013).

[20] PaT1, Y. Recursive function approximation with
applications to wavelet decomposition. Proc. Asilomar
Conf. Signals, Systems, and Computers (1993).

[21] TiBSHIRANI, R. Regression shrinkage and selection via the
lasso. Royal Statist. (1996).

[22] Ya0, A. Protocols for secure computations. In FOCS
(1982).

[23] ZuaNG, K., AND RUAN, Y. Sedic: privacy-aware data
intensive computing on hybrid clouds. In CCS (2011).

