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Abstract— On-device intelligence has become increasingly
widespread in the modern smart application landscape. A stand-
ing challenge for the applicability of on-device intelligence is
the excessively high computation cost of training highly accurate
Deep Learning (DL) models. These models require a large
number of training iterations to reach a high convergence
accuracy, hindering their applicability to resource-constrained
embedded devices. This paper proposes a novel transformation
which changes the topology of the DL architecture to reach
an optimal cross-layer connectivity. This, in turn, significantly
reduces the number of training iterations required for reaching
a target accuracy. Our transformation leverages the important
observation that for a set level of accuracy, convergence is fastest
when network topology reaches the boundary of a Small-World
Network. Small-world graphs are known to possess a specific
connectivity structure that enables enhanced signal propaga-
tion among nodes. Our small-world models, called SWANNsSs,
provide several intriguing benefits: they facilitate data (gra-
dient) flow within the network, enable feature-map reuse by
adding long-range connections and accommodate various net-
work architectures/datasets. Compared to densely connected net-
works (e.g., DenseNets), SWANNSs require a substantially fewer
number of training parameters while maintaining a similar level
of classification accuracy. We evaluate our networks on various
DL model architectures and image classification datasets, namely,
MNIST, CIFAR10, CIFAR100, and ImageNet. Our experiments
demonstrate an average of ~ 2.1x improvement in convergence
speed to the desired accuracy.

Index Terms— Deep learning, on-device training, small-world
networks.

I. INTRODUCTION

EEP learning models are increasingly popular for var-

ious automated learning tasks, particularly in visual
computing applications. Recently, there has been a shift
to incorporate DL training and execution on smart devices
rather than offloading the computations to cloud-based servers.
This transition is motivated by the compelling properties
of on-device computation, e.g., preserving user data privacy
and eliminating the need for continuous network connection.
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A standing challenge for on-device intelligence is the limited
resources available on embedded devices that slow down
DL execution compared to the cloud. The constraints of the
embedded environment are specially critical for lengthy DL
training. Contemporary DL models require high number of
training iterations to converge, hindering their applicability to
on-device learning. In this paper, we focus on reducing the
required training iterations for convergence, thereby paving
the way for on-device learning applications such as federated
learning and (local) personalization.

The literature in Neural Architecture Search (NAS) is
primarily focused on generating compact and accurate Deep
Neural Networks (DNNs) for inference. To increase the search
flexibility and reach a higher accuracy, a recent body of
work in NAS explores the use of irregular wirings, aka
bypass connections [1]-[4]. These bypasses connect (non-
consecutive) layers in the DL architecture that would otherwise
be disconnected in a traditional DNN. While prior work
in NAS can reduce the computational complexity of DNN
inference, there has been little focus on the training cost of the
obtained DNNs for reaching their target accuracy. To enable
on-device learning, we study irregular network wirings through
the lens of DL training speed.

We propose a novel methodology that transforms the topol-
ogy of conventional DNNs such that they reach an optimal
cross-layer connectivity. This, in turn, significantly reduces
the number of training iterations required for reaching a target
accuracy. This transformation is based on our observation that
the pertinent connectivity pattern highly impacts training speed
and convergence. To ensure computational efficiency, our
architectural modification takes place prior to training. Thus,
the incorporated connectivity measure must be independent of
network gradients/loss and training data. Towards this goal,
we view DNNs as graphs and revisit Small-World Networks
(SWNs) [5] from graph theory to transform DNNs into highly-
connected small-world topologies. Watts-Strogatz SWNs [5]
are widely used in the analysis of complex graphs; Due to
SWNs’ specific connection pattern, these structures provide
theoretical guarantees for considerably decreased consensus
times [6]—[8].

Our network modification algorithm takes as input a conven-
tional DNN architecture and enforces the small-world property
on its topology to generate a new network, called SWANN.
We leverage a quantitative metric for small-worldness and
devise a customized rewiring algorithm. Our algorithm restruc-
tures the inter-layer connections in the input DNN to find a
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Fig. 1.  Schematic representation of the connections within a small-world
DNN. An arbitrary neuron’s output is connected to selected neurons in the
proceeding layers via sparse connections (convolutions) denoted by S-CONV.

topology that balances regularity and randomness, which is the
key characteristic of SWNs [5]. Small-world property in DNNs
translates to an architecture where all layers are interlinked via
sparse connections, an example of which is shown in Fig. 1.

SWANNSs have similar quality of prediction and number
of trainable parameters as their baseline feed-forward archi-
tectures, but due to the added sparse links and the optimal
SWN connectivity, they warrant better data flow. In sum-
mary, our architecture modification has three main properties:
(i) It removes non-critical connections. (ii) It increases the
degrees of freedom during training, allowing faster conver-
gence. (iii) It provides customized data paths in the model for
better cross-layer information propagation.

We conduct comprehensive experiments on various network
architectures and showcase SWANNs’ performance on popular
image classification benchmarks including MNIST, CIFAR10,
CIFAR100, and ImageNet. Our small-world DNNs achieve an
average of 2.1-fold reduction in training iterations required
to achieve comparable test accuracy as the baseline models.
We further compare SWANN with the DenseNet model and
show that with 10x fewer parameters, SWANNSs demonstrate
identical performance during training. Finally, as a popular
application of on-device learning, we benchmark SWANN
in the federated learning scenario where multiple embedded
devices collaboratively train a global model on their local
datasets. In the federated scenario, SWANN reduces the
number of (global) training iterations by 1.4x on average,
thereby reducing both the computation and communication in
decentralized learning.

II. RELATED WORK AND BACKGROUND
A. Related Work

A line of research has focused on the addition of bypass
connections to the DNN architecture to enhance inter-layer
information flow and enable feature reuse. Perhaps the pioneer
work is ResNet [9], which uses identity links (skip connec-
tions) to connect non-sequential layers. ResNet’s skip connec-
tions follow a modular structure which results in redundancies
since not all identity links are necessary as shown by [10].
DenseNets [1] are another example that use skip connections
to connect each layer to all its preceding layers in a block. This
is done by concatenating previous layers’ feature-maps and
using them as the input. Another work [11] argues that such
dense connectivity incurs redundancies since earlier features
might not be required in later layers. The authors of [11] prune
the redundancies to generate a more efficient architecture for
the DNN inference phase.
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Fig. 2. Information flow within a ResNet (top), DenseNet (middle), and
SWANN (bottom) network. Here, CONV, BN, ReLU denote a convolution
kernel, batch normalization, and non-linear activation, respectively, and our
customized sparse convolutions are shown as S-CONV. Normal inter-layer
connections are represented with bold lines and dotted lines are SWANNs’
selective inter-links.

Fig. 2 illustrates the connection pattern in a ResNet,
DenseNet, and SWANN architecture. In contrast to these two
models, SWANN is not structured upon fixed building blocks
and therefore can adapt to any given network architecture.
Different from DenseNets which only accommodate fully
dense connections, SWANNS leverage customized sparse con-
volutions. This sparsity enables selective connectivity between
pairs of layers that enhance convergence speed while ensuring
a low redundancy. Using sparse connections is explored in [12]
where a trained DNN is pruned in a post-processing phase to
reduce parameter count and improve inference performance.
However, the pruning does not directly incorporate small-
world characteristics and there is no analysis to show that
the pruned networks are small-world. Additionally, the focus
of [12] is on the inference phase and the pruning is performed
after the DNN is trained. Rather, our approach is performed
prior to DNN training with the goal of improving convergence.
Finally, since the number of parameters is reduced in [12], the
accuracy degrades compared to the baseline DNN. SWANN
keeps the total number of parameters constant when converting
the DNN to a small-world, thereby maintaining the accuracy.

Recent literature in NAS suggests exploration of irregularly
wired DNN topologies [13], [14] and random connections
[2]-[4] to obtain higher accuracies. Irregularly wired DNNs
deviate from the regular DNN topology where the output of
each layer is only fed to its immediately preceding layer.
From the accuracy and computation perspective, the irregularly
wired models have been shown to outperform regular DNNs
for inference. The accuracy gains of random DNN connections
has also been recently explored from a theoretical standpoint
in [15]. Prior work also explores customized compilers and
scheduling schemes for the irregularly wired networks to boost
their execution performance on edge devices [16].

Perhaps the first investigation of SWNs in the context of
machine learning was performed in [17], where small-scale
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Multilayer Perceptrons (MLPs) are transformed to a small-
world graph. The paper shows that the small-world graph
achieve lower error after the same total number of train-
ing iterations. Similarly, [18] transforms simple MLPs to
SWN graphs and study the accuracy benefits for diagnosis
of diabetes. SWANN substantially differs from these works
as our solution is applicable to contemporary convolutional
neural networks containing various linear kernels and irregular
long/short-range connections. Additionally, [17], [18] use a
different mathematical model and metric for small-worldness.
Authors of [19] randomly rewire MLPs to improve their
function approximation capabilities. While the models are
generated using random rewiring, there is no systematic choice
of rewiring probability and no analysis of small-world char-
acteristics for the developed models. Follow-up work studied
the properties of randomly rewired DNNs [2], [4], [15] on
classification accuracy, however, they did not specifically focus
on small-world characteristics.

In summary, prior work mainly focuses on accuracy gains
of long-range connections with little attention to the training
process. To the best of our knowledge, SWANN is the first
work to intertwine the small-world property with DNNs and
examine the acquired networks in terms of both training
convergence speed and accuracy.

B. Background: Small-World Networks

Watts and Strogatz [5] observed that real-world complex
networks, e.g., the anatomical connections in the brain and the
neural network of animals, cannot be modeled using existing
regular or random graph classes. As such, they introduced
the new category of small-world networks. Members of the
small-world class have two main characteristics: 1) They
have a small average pairwise-distance between graph nodes.
2) Nodes within the graph exhibit a relatively high (local)
clustered structure. The first property is mainly associated
with random graphs while the second property is prominent
in regular graphs. SWNs have shown significantly enhanced
signal propagation speed, consensus, synchronization, and
computational capability [8], [20]-[23].

Randomness is introduced into a regular graph structure by
iterative removal and addition of edges with probability, p,
in order to construct an SWN. Fig. 3 demonstrates the tran-
sition between a regular graph and the corresponding random
graph as the rewiring probability increases from 0 to 1. Inter-
mediate values of p interpolate between complete regularity
and randomness to generate an SWN.

IIT. SWANN: SMALL-WORLD DNNSs

We propose to restructure the inter-layer connections in a
DL model such that its topology falls into the small-world
category while the total number of parameters in the network
is held constant. Throughout the paper, we use the terms
DL model and DNN interchangeably but emphasize that our
approach is easily applicable to models without convolution
layers, e.g., Multi-Layer Perceptrons (MLPs).

In the following, we first elaborate on the small-world
criteria and introduce methods to distinguish SWNs from other
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Fig. 3.  Transition of a regular graph to a completely random network.
Intermediate values of the random rewiring probability, p, generate SWNis,
i.e., clustered structures where any arbitrary node pair is connected by a few
edges.

topologies (Sec. III-A). We then explain our conversion of an
arbitrary DNN into its equivalent SWANN (Sec. I1I-B). Lastly,
we delineate our implementation and formalize the operations
performed in an SWANN (Sec. III-C).

A. Metric for Small-Worldness

To examine the small-world property for a given graph,
we study two properties, namely, the characteristic path
length (L) and the global clustering coefficient (C). For a
given graph, L is calculated by taking the average of minimum
path lengths over all node pairs. In this context, the minimum
path length is equal to the smallest number of edges one must
traverse to get from the first node to the second, or vice versa.
The clustering coefficient C is a measure for the connection
density between neighbors of any node in the network and is
formulated as follows:

E;

v
C = Ci, whereC; = ——— 1
i:zl ; = Tmn =D (1)

Here, C; denotes the local clustering coefficient of the
i'" node (v;), E; is the number of edges between neighbors
of v;, N; is the number of neighbors of v;, and V is the total
number of nodes. As shown, the global clustering coefficient,
C, is the mean of local coefficients. Regular lattices are
highly clustered (large C) but have a very high L which
conflicts with our desire to create bypass connections in the
DNN. A completely random graph enjoys a small L but
lacks clustering. Small-world graphs strike a balance between
randomness and regularity by having a large C and small L.

By definition, a graph is small-world if it has a similar L
but higher C compared to an Erdos — Re'nyi (E — —R)
random graph [24] constructed using the same number of
nodes and edges. Let us denote the clustering coefficient and
the characteristic path length of a given graph (G) by Cg
and Lg, respectively. In a similar fashion, we represent the
corresponding characteristics of the equivalent £E—— R random
graph by Crands Lrand. We use a quantitative measure of the
small-world property form [25] which categorizes a network
as an SWN if Sg > 1 where Si is calculated using Eq. (2).
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B. Acquiring the Small-World Architecture

1) Graph Generation: In order to modify a given DNN
architecture and generate the equivalent SWANN, we first
model all connections within the network as a graph repre-
sentation. In this context, a connection is defined as a linear
operation performed between an input element and a trainable
weight (network parameter) found in Convolution (CONYV)
and Fully-Connected (FC) layers. For CONYV layers, each
feature-map channel is represented by one node and each
edge represents a k x k kernel. For FC layers each neuron is
assigned a separate node and the edges correspond to weight
matrix elements.

2) Architecture Search: After generating the graph that
corresponds to the input DNN architecture, we proceed to find
the equivalent SWANN. To perform this task, the initial graph
is randomly rewired with different probabilities, p € [0, 1],
similar to Fig. 3. For each rewired graph, we compute the
characteristic path length L and clustering coefficient C and
use the captured pattern for each criterion to detect the small-
world topology using the small-worldness measure in Eq. (2).

a) Rewiring policy: Let us denote an edge with e(v;, v;)
where v; and v; are the start and end nodes. To perform
random rewiring with probability p, we visit all edges in
the graph once. Each edge is rewired with probability p or
kept the same with probability 1 — p. If the edge needs
to be rewired, a new second node v;s is randomly sampled
from the set of nodes that are non-neighbor to the edge’s
start node, v;. This second node is selected such that no
self-loops or repeated links exist in the rewired graph. Once
the destination node is chosen, the initial edge, e(v;,v;) is
removed and replaced by e(v;, v;/). Algorithm 1 summarizes
the rewiring procedure performed on a baseline DNN to
generate the rewired counterpart. Here, A is the total number
of layers in the network, V; denotes the nodes in the Ith layer,
and Ej ;4 is the set of edges connecting neurons in layer / to
its preceding layer (/ + 1). Input layer is shown as [ = 0.

Algorithm 1 Random Rewiring Procedure

1: Input: input DNN’s graph G, rewiring probability p
2: Output: rewired network G4

3 Grpad < G

4: for [ =0 to (M —2) do

5 for v; in V; do

6 for v; in V; 4 do

7: if |[E;j+1] > 1 and e(v;,v;) € Grpa then
8: r ~U[0, 1]

9 if » < p then

10: Grwd < {Grwa — e(vi,v;))}

11: while e(v;,v;/) € Gyypq do

12: vjr ~{Vig2 U---U V)

13: Grwd < {Gruwa + e(vi, v}

Fig. 4 demonstrates the removal/addition of edges in the
DNN architecture during our rewiring procedure. Note that
our rewiring methodology does not alter the number of con-
nections in the DNN. As a result, the total number of trainable

non-neighbor
nodes

neighbor nodes

Fig. 4. Our proposed rewiring algorithm replaces edges to the subsequent
layer (red) with long-range edges (blue).
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Fig. 5. Clustering coefficient (C), small-world property (S ), and path length
(L) versus rewiring probability. The region where the graph transforms into
a small-world network is shown with the double-headed arrow.

parameters in the final obtained SWANN equals that of the
original network.

b) Network profiling: Using the aforementioned rewiring
policy, we generate various graphs by sweeping the rewiring
probability in the [0,1] interval. Fig. 5 demonstrates the
correlation between C and L as the rewiring probability
is changed for a 14-layer DNN. For conventional DNNs,
the clustering coefficient is zero and the characteristic path
length can be quite large specifically for very deep networks
(leftmost points on Fig. 5). As such, DNNs are far from
networks with the small-world property. Random rewiring
replaces short-range connections between subsequent layers
with longer-range connections. Consequently, L is reduced
while C increases as the network shifts towards its small-world
equivalent. We select the topology with the maximum value of
small-world property, Sg, as the SWANN. As a direct result
of such architectural modification, the new network enjoys
enhanced connectivity in its dataflow graph which results in
better gradient propagation and training speedup.

To compare the training convergence of SWANN with other
configurations generated during the probability sweep, we train
several rewired networks on the MNIST dataset [26], each of
which is constructed from a 5-layer DNN. Fig. 6 demonstrates
the convergence rate of these various architectures versus the
rewiring probability p that is used to generate them from the
baseline DNN. Due to the addition of long-range connections,
all models show convergence improvements over the baseline.
However, the perfect balance between node clustering and
average path length is achieved for the SWN which leads to
the fastest training convergence for SWANN.

C. SWANN Methodology

1) DNN Formulation: Conventional DNNs are comprised of
subsequent layers where each layer, /, in the network performs
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Fig. 6. Convergence to 99.0% test accuracy for a S5-layer DNN and its
randomly rewired counterparts trained on the MNIST dataset. Here, the
relative convergence rate is computed as i—”, where ¢, and e, denote the
number of training epochs required for the baseline and rewired models to
reach the target accuracy, respectively. The SWN is shown with a red star.

a combination of linear and nonlinear operations on its input,
X7, to generate the corresponding output, y;. We denote core
linear operations (CONYV and FC) in a DNN by W;(-) with
the subscript representing the layer index. Other operations can
take the form of Batch Normalization (BN), Re LU activation,
and Pooling. For each linear layer, we bundle one or more
of such operations together and show them as one composite
function, C;(.). For an arbitrary layer / in a conventional DNN,
the output is thus formalized as:

v = Cr (Wi (xp)) (3)

Note that the cascaded nature of DNNs implies that the
generated output from one layer serves as the input to the
immediately succeeding layer, i.e., x;41 = y;.

2) Sparse Connections in SWANNs: One major difference
between SWANNs and conventional DNNs is that SWANN
layers can be interconnected regardless of their position in
the network hierarchy. More specifically, the output of each
layer of a SWANN is connected to all its succeeding layers
via sparse weight tensors. These connections are implemented
via convolution kernels with coarse-grained sparsity patterns.

By definition, CONV layers sweep a k xk convolution kernel
across an input tensor of dimensionality Wi, x Hj, X chi
to generate an output feature map with dimensions W,,; x
Hyyui X chy where chy and chy denote the number of input and
output channels, respectively. In order to generate the graph-
equivalent of such layer, we represent each k x k kernel by a
single edge in the graph as shown in Fig. 7. To remove each
connection from the graph, we mask the corresponding k x k
kernel to zero to generate a sparse weight tensor. Fig. 8 shows
the convolution filters of an example sparse connection from a
layer with 5 output channels to a layer with 3 output channels
and the corresponding small-world graph representation.

Let us denote sparse connections from layer /1 to layer I,
by W, (). The output of the /-th layer in SWANN can then
be calculated as:

=CW e+ D W on) &
I <l—1

Comparing the above formulation with Eq. 3, we highlight
the extra summation term that accounts for the inter-layer
connections. Note that in Eq. 4, both Wls and Wls1 , are
sparse tensors. The inter-layer connectivity in SWANN enables
enhanced data flow, both during inference and training stages,

Graph
Representation

CONYV Layer

Fig. 7. Conversion of a CONV layer to its graph representation. Each k x k
convolution kernel is replaced by an edge in the corresponding graph where
the input and output filter channels are shown as two consecutive rows of
vertices with ch| and chy nodes, respectively.

Sparse Convolution Graph
Weight Tensor Representation
©
o[o[o 0[0[0
o[o[0 0[0[0 =|ch, ch,
0]0]0 0]ojo),
0 0 ¥ eh,
ch,
Fig. 8. Coarse-grained sparse convolution between a layer with ch; = 5

output channels and a layer with chp = 3 output channels. Left: Sparse
convolution weights. For each removed connection from the graph, we show
the corresponding filter in the sparse convolution weight by zero. The
colored channels represent trainable DNN weights which can take on any
arbitrary floating-point value. Right: Equivalent graph with nodes representing
channels.

while the sparse connections mitigate unnecessary parameter
utilization. Unlike the previously proposed feature concatena-
tion methodology [1], we perform summation over the feature-
maps. This, in turn, mitigates the appearance of extremely
high dimensional weight kernels that result from channel-wise
feature-map concatenation. Furthermore, the summation of
feature-maps enables SWANN to be applicable to all network
architectures with various layer configurations. We gradually
increase the stride in the long-range sparse connections as
a function of the distance between the inter-linked layers.
This allows us to reduce the dimensionality of the produced
feature-maps as well as tune the impact of added long-
range connections. In addition to adjusting the convolution
strides, we use zero-padding where necessary to match the
dimensionality of inter-layer connected feature-maps.

3) Composite Non-Linear Operation: Unlike DenseNets [1]
and ResNets [9] where several linear layers are concatenated
before pooling is performed, SWANNs support pooling imme-
diately after each CONYV layer as seen in conventional DNN
architectures. We experiment with various configurations of
the widely-used non-linear operations, i.e., BN, ReLU, and
Maxpool to investigate the effect of ordering on network
convergence. Our experiments demonstrate that SWANN con-
vergence is enhanced when the composite non-linear function,
C; is implemented as a ReLU, followed by Maxpooling and
BN as shown in Fig. 2.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 12,2022 at 19:59:31 UTC from IEEE Xplore. Restrictions apply.



580

IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 11, NO. 4, DECEMBER 2021

TABLE I

BENCHMARKED DNNS FOR EVALUATING SWANN EFFECTIVENESS. CONV LAYERS ARE REPRESENTED AS (kernel size)CONV
AND FC LAYERS ARE DENOTED BY (output elements)FC. BN AND ReLU ARE NOT SHOWN FOR BREVITY

Convolution MaxPool | Convolution | MaxPool | Convolution | MaxPool | Convolution | MaxPool | Convolution MaxPool Classifier
2x%x2 2X2 2X2 84FC
MNIST Sx5Com | rigen | DXPCOW | ghigen | BXB OO | gige o 10FC, softmax
ConvNet-C [27]* [3 x 3 Conv] 2%x2 [3 x 3 Conv] 2x2 [3 x 3 Conv] 2X%x2 [3 x 3 Conv] 2x%x2 [3 x 3 Conv] 2x%x2 S512FC
(C10, C100) X2 stride 2 X2 stride 2 x3 stride 2 x3 stride 2 x3 stride 2 10FC, softmax
4096FC
ﬂ:aNe:N[fg] H (:tril(;e %’“" st2ri21<622 5 x 5 Conv st2ri>d<622 3 x 3 Conv 3 x 3 Conv 3 x 3 Conv Sfrijfz 4096FC
8 1000FC, softmax
ResNet-18 [9] 7 x 7 Conv 3x3 [3 x 3 Conv] [3 x 3 Conv] [3 x 3 Conv] [3 x 3 Conv] TXT
(ImageNet) (stride 2) stride 2 x4 - x4 x4 - x4 average pool 1000FC, softmax

* We modify the ConvNet-C fully-connected layers form [27] to comply with the CIFAR datasets.

Convolution | Dense Block (1) Transition Block

Dense Block (2)

Transition Block Dense Block (3) Classifier

DenseNet-40 [1]
(C10)

1 x 1 Conv

33 Conv 2 X 2 average pool

[3 x 3 Conv]x12

[3 x 3 Conv]x12

1 x 1 Conv
2 X 2 average pool

8 x 8 average pool

[3 x 3 Conv]x12 10FC, softmax

* Conv denotes a BN, followed by a ReLU and a convolution layer.

IV. EXPERIMENTS

We conduct proof-of-concept experiments on different net-
work architectures and image classification benchmarks to
empirically demonstrate the enhanced training convergence
of SWANNSs compared to the baseline (conventional) DNNS.
We leverage popular DL libraries Keras and PyTorch for our
implementations. All experiments are performed on a machine
with Nvidia Titan XP GPU and Intel Xeon CPU.

Our evaluations target both centralized and decentralized
on-device learning scenarios. Sec. IV-C, IV-D, IV-E enclose
our evaluations in the centralized training setup. This setup
directly simulates on-device learning applications where users
train/finetune a model locally on their personal data samples,
e.g., personalization. Sec. IV-F encloses the evaluation in the
decentralized (federated) learning setup where several users
collaboratively train a global model by performing multiple
local updates and a global aggregation.

A. Datasets

1) MNIST: This dataset consists of 10 classes of 28 x 28
gray-scale images from handwritten digits with 60,000 train
and 10,000 test images. We normalize the data using
the per-channel mean and variance prior to training and
testing.

2) CIFAR: We carry out our experiments on the two avail-
able CIFAR datasets. CIFAR10 (C10) and CIFAR100 (C100)
benchmarks consist of colored images with dimensionality
32 x 32 that are categorized in 10 and 100 classes, respectively.
Each dataset contains 50,000 samples for training and 10,000
samples for testing. We use standard data augmentation rou-
tines popular in prior work [9], [10]: samples are normalized
using per-channel mean and standard deviation. At training
time, random horizontal mirroring, shifting, and slight rotation
are also applied.

3) ImageNet: The ISLVRC-2012 dataset, widely known as
the ImageNet, consists of 1000 different classes of colored
images with 1.2 million samples for training and 50,000 sam-
ples for validation. We use the augmentation scheme proposed
in [27] and [29] to preprocess input samples: during training,
we resize the images by randomly sampling the shorter edge
from [256, 480]. A 224 x 224 crop is then randomly sampled
from the image. We also perform per-channel normalization
as well as horizontal mirroring [28].

TABLE II
GRAPH CHARACTERISTICS OF SWANN MODELS

model Y& Aa Sa D

MNIST 1.09 099 1.09 045
ConvNet-C 1.20 1.01 1.19 0.85
AlexNet 148 1.00 148 0.80
ResNet-18 1.06 1.00 1.06 0.83
DenseNet-40 1.20 1.01 1.19 0.92

B. Benchmarked Architectures

Tab. I encloses our baseline DNN architectures. SWANNSs
maintain the same feed-forward architecture as the baseline
networks and are constructed by 1) replacing CONYV layers
with sparse convolutions and 2) adding sparse convolutions
between non-consecutive layers. Table II encloses the relative
clustering coefficient yg, relative average path length Ag,
small-world property S, and rewiring probability p to achieve
the corresponding SWANN for each baseline DNN. Here,
vG, AG, and Sg follow the definitions in Eq. (2). As seen,
all SWANN models satisfy the small-world characteristic,
i.e., SG > 1.

C. Results on MNSIT

We train the 5-layer architecture shown in Tab. I as our
baseline. The small-world equivalent of the baseline model
is generated using a rewiring probability of 0.5. To prevent
overfitting, a dropout layer with the rate of 0.5 is added
between the two FC layers in both the baseline DNN and
SWANN. We train the models using Adadelta optimizer [30]
with an initial learning rate of 1 and a decay of 0.95. Batch
size is set to 256 for both models.

1) Convergence: Figure 9 compares the test error and train-
ing loss of the baseline DNN and its small-world counterpart
throughout training. Both models achieve a final test accuracy
of 99.1% on the MNIST dataset. The plain baseline DNN
converges to the aforesaid accuracy in 19 epochs (=4864
iterations) while SWANN reaches the convergence accuracy
in 9 epochs (=2304 iterations) which shows 2.1x improve-
ment over the baseline.

D. Results on CIFAR

1) ConvNet-C: We train the ConvNet-C [27] model on C10
and C100 benchmarks with a batch size of 128. To prevent
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Fig. 9. Comparison of a plain DNN’s training convergence with its small-
world equivalent. Here, the red and blue colors show SWANN and baseline,
respectively. The = markers denote the point of convergence to final test
accuracy for the models with the corresponding colors.

TABLE III

POINT-WISE COMPARISON OF CONVERGENCE SPEED-UP FOR A SWANN
AND ITS EQUIVALENT BASELINE NETWORK (CONVNET-C)
ON CIFAR BENCHMARKS

= | Baseli Test Error (%) 2421 17.80 9.22 8.51 7.56
E‘ Iterations 1408 2560 8704 11008 18560
<« Test Error (%) 23.73 17.57 8.64 8.25 7.44
E SWANN Tterations 896 1536 4992 5888 7040
[ Speed-up [ 157x ] 1.67x [ 1.74x | 1.87x [ 2.64x
= | e Test Error (%) 77.08 52.3 41.54 31.14 29.52
E Iterations 2944 6144 9472 16128 | 28928
Test Error (%) 76.67 50.57 40.18 31.15 29.26
<
= SWANN Iterations 384 1408 3072 7808 10240
&)

[ Speed-up [ 7.67x | 436x [ 3.08x | 2.01x [ 2.82x

overfitting, a dropout layer with a rate of 0.5 is added before
the first F'C layer. The small-world model is constructed
using the same configuration of layers as the baseline, includ-
ing the dropout layers. We use Stochastic-Gradient-Descent
(SGD) optimizer with Nesterov, 0.9 momentum, and a 5e —4
weight decay. Models are trained for 2e+4-4 and 3e+-4 iterations
on C10 and C100, respectively. The initial learning rate is
set to 0.01 for both datasets and learning rate is decayed by
0.5 upon optimization plateau.

a) Convergence: Fig. 10-(a) illustrates the test error and
training loss of the baseline and SWANNSs as two represen-
tatives of the convergence speed. Similarly, for C100 bench-
mark, the corresponding convergence curve is presented in
Fig. 10-(b). While these figures qualitatively demonstrate the
effectiveness of our methodology, we provide a quantitative
measure for a solid comparison between SWANN and the
baseline. We investigate several points corresponding to vari-
ous test accuracies and compare the two models’ convergence
to these points.

Tab. III summarizes the per-accuracy speed-up of SWANN
over the baseline model. As seen, the speed-up varies for
different accuracies, however, for all test accuracies, SWANN
requires a substantially fewer number of iterations for conver-
gence. At the final saturation point (marked by x on Fig. 10),
both models achieve comparable accuracies while SWANN
enjoys a 2.6x and 2.8x reduction in convergence time for
C10 and C100 datasets, respectively.

TABLE IV

COMPARISON OF THE COMPUTATIONAL COMPLEXITY AND MODEL
PARAMETER SPACE BETWEEN A 40-LAYER DENSENET WITH
k = 12 AND THE CORRESPONDING SWANN

Model Depth | Params | FLOPs | Test Error
DenseNet (k = 12) 40 910K 285.3M 0.071
SWANN 40 98K 85.5M 0.074

2) DenseNet: DenseNets [1] achieve state-of-the-art accu-
racy by connecting all neurons from different layers of a
dense block with trainable (dense) parameters. Such dense
connectivity pattern results in high redundancy in the para-
meter space and causes extra overhead on training. We show
that a SWANN with only sparse connections and much fewer
parameters achieves similar results as DenseNet.

We train a DenseNet model with 40 layers and k = 12
(Tab. I) on C10 dataset. The equivalent SWANN is constructed
by removing all long-range dense connection from the archi-
tecture and rewiring the remaining (short) edges such that each
dense block becomes small-world. The SWANN maintains the
same number of layers while the inter-layer connections are
implemented using sparse convolution kernels, thus incurring
substantially fewer number of trainable parameters.

We use the publicly available PyTorch implementation for
DenseNets! and replace the model with our small-world
network. Same training scheme as explained in the original
DenseNet paper [1] is used: models are trained for 19200
iterations with a batch size of 64. Initial learning rate is 0.1
and decays by 10 at % and % of the total training iterations.

a) Convergence: Fig. 11 demonstrates the test accuracy
of the models versus the number of epochs. As can be
seen, although SWANN has much fewer parameters, both
models achieve comparable validation accuracy while showing
identical convergence speed. We report the computational
complexity (FLOPs) of the models as the total number of mul-
tiplications performed during a forward propagation through
the network. Tab. IV compares the benchmarked DenseNet
and SWANN in terms of FLOPs and number of trainable
weights in CONYV and F C layers. We highlight that SWANN
achieves comparable test accuracy while having 10x reduction
in parameter space size.

E. Results on ImageNet

1) AlexNet: We train the AlexNet [28] model on ImageNet
dataset and follow the architecture provided in the Caffe
model zoo [31] (See Tab. I). In order to mitigate overfitting,
we add dropout layers with probability 0.5 after the FC
layers. Loss minimization is performed by means of SGD with
Nesterov [32] and a 0.9 momentum. We set the batch size
to 64 for both models and incorporate an exponential decay
for the learning rate: initial learning rate is set to 2.5¢—3 and
the decay factor is 0.99999875 [33].

a) Convergence: To fully examine the performance of our
model, we report the speed-up of SWANN over the baseline
for several values of test error. Tab. V encloses the point-
wise comparison between the benchmarked models. As can be

1 https://github.com/andreasveit/densenet-pytorch
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Fig. 10. Test error and training loss versus iterations for a ConvNet-C model and the rewired SWANN trained on (a) CIFAR10 and (b) CIFAR100 datasets.
Here, the red and blue colors show SWANN and baseline, respectively. The » markers denote the point of convergence to final test accuracy for the models

with the corresponding colors.
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DenseNet [1] with 1M parameters and our corresponding SWANN with less
than 100K parameters.

TABLE V

PERFORMANCE OF A BASELINE ALEXNET AND ITS SWANN
BENCHMARKED ON IMAGENET DATASET

oo | Test Error (%) | 51.72 | 46.29 | 4421 | 4231 | 42.01
3 Ticrations 1088 | 2304 | 3264 | 4416 | 5120
% | SwANN | TesLError (%) | 5197 | 4649 | 4425 | 4231 | 4155
=2 Tterations 768 | 1664 | 2368 | 3520 | 3776

[ Speed-up [ 142x ] 138x | 1.38x | 1.25x | 1.36x

seen, for all values of test error, the convergence of our small-
world architecture is faster. SWANN converges to the final test
accuracy after 3776 iterations while the baseline model needs
5120 iterations, resulting in a 1.4x overall speed-up.

2) ResNet: We adopt the training scheme in the original
ResNet paper [9]. To build the SWANN, we first remove all
shortcut and bottleneck connections from the model. We then
rewire the connections in the acquired plain network such that
it becomes small-world. No dropout is used for the baseline
and SWANN. Batch size is set to 128 and we use SGD with
0.9 momentum and le —4 weight decay. Initial learning rate is
0.1 and decays by 0.1 when the accuracy plateaus. We train the
models for 9¢ + 5 iterations and report single-crop accuracies.

a) Convergence: We enclose point-wise comparisons
between the baseline ResNet and SWANN for various iter-
ations and test errors in Tab. VI. As seen, SWANN achieves

TABLE VI

POINT-WISE CONVERGENCE COMPARISON OF A BASELINE RESNET-18
AND ITS SWANN EQUIVALENT ON IMAGENET DATASET

o | BaseLine Test Error (%) | 60.37 56.94 37.91 31.72

oy Tterations 1792 3456 7424 9344

2 Test Error (%) 59.63 56.76 37.86 31.68

Z

é SWANN Iterations 512 768 3584 7168
[ Speed-up [ 350x [ 450x [ 2.07x | 1.31x

faster convergence throughout training and reaches the final
test accuracy with 1.3x less iterations. This shows that the
systematic restructuring of long edges in SWANN allows for a
better convergence behavior compared to the replicated blocks
in ResNet.

F. Federated Learning

In this section, we corroborate SWANN enhanced con-
vergence in the federated learning setting as a candidate
application for on-device learning. In this setup, a server holds
a global model and users each have a unique (local) dataset.
The users compute the weight updates for the global model
on their local datasets and communicate the updated weights
to the server. The server then aggregates the weights from
all users and updates the global model. We implement the
popular FedAvg algorithm [34] for federated learning where
each user performs several local updates on the global model
before sending the updated weights to the global server.

Following the original paper [34] we consider a pool of
100 users and randomly select 10 users at each iteration to
send their updates to the server. We perform 5 local updates on
each user with a batch size of 10. This setting provides a good
balance between the total number of communication rounds
for convergence and the required amount of computation per
iteration for each user [34]. Optimization is performed using
SGD with learning rate of 0.01 for both the baseline DNN and
the SWANN. Our evaluations are performed on the MNIST
dataset with the baseline DNN architecture shown in Tab. I.

We evaluate SWANN under two distributed data settings:
1) IID where the data is distributed uniformly across all users,
i.e., each user has instances of all classes. 2) Non-IID where
the entire data is sorted by their label, divided into 200 shards
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the models with the corresponding colors.

of size 300, and each user is assigned 2 shards [34]; users
on average only have instances from two classes. Fig. 12-a,b
demonstrate the test accuracy and training loss versus number
of local updates for the baseline DNN and its corresponding
SWANN in the IID and non-IID settings, respectively.

1) IID Data: To reach the final test accuracy of 99.1%,
the baseline DNN requires 450 local updates while SWANN
only requires 330, thereby showing a 1.4x reduction in the
computation performed on the user devices. In addition
to the savings in computation, SWANN also reduces the
total number of required global aggregations by 1.4x, which
directly translates to a reduced communication cost between
users and the server.

2) Non-IID Data: In the non-IID setting, SWANN outper-
forms the baseline DNN both in terms of the convergence
rate and final test accuracy. The baseline DNN requires
1300 local updates to converge to the final test accuracy
of 98.7% while SWANN converges to 98.9% test accuracy
with 1020 local updates. As a result, SWANN achieves 1.3x
reduction in the users’ computation and communication during
training. The higher accuracy of SWANN in the challenging
non-IID data setting further demonstrates the better stability
of SWANN during training compared to non small-world
architectures.

For a more detailed comparison, we include additional
convergence points to target test accuracies for the baseline
DNN and SWANN in Tab. VII. As shown, SWANN reaches
all target accuracies considerably faster than the baseline.
On average, SWANN requires 1.5x and 1.6x less compu-
tation and communication for embedded user devices in the
IID and non-IID settings, respectively.

V. DISCUSSION ON LONG-RANGE CONNECTIONS

The selected small-world structure for a given DNN has
two main characteristics, namely high clustering of nodes
and small average path length between neurons across layers.
We postulate that such qualities render the SWN desirable
during training due to the enhanced information flow paths
existent in these efficiently-connected networks. To examine
our hypothesis, we visualize the weights connecting different
layers of the trained SWANN for C10, C100 (ConvNet-C), and

TABLE VII

POINT-WISE CONVERGENCE COMPARISON OF THE 5-LAYER BASELINE
DNN AND ITS CORRESPONDING SWANN IN THE FEDERATED
LEARNING SCENARIO

BaseLine Test Error (%) | 98.16 98.65 98.90 99.07
a Local Updates 85 200 355 450
= Test Error (%) | 98.14 98.65 98.89 99.07
= | SWANN Local Updates 60 130 220 330
Speed-up 1.42x 1.54x 1.61x 1.36 x
BaseLine Test Error (%) | 96.12 96.67 98.10 98.74
=] Local Updates 170 405 555 1300
< Test Error (%) | 96.14 97.63 98.16 | 98.72%
=
g SWANN Local Updates 100 230 325 900
[ Speed-up [ 1.70x [ 1.76x [ 1.71x [ 1.44X

*SWANN reaches a final test accuracy of 98.90% after 1020 local updates.
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Fig. 13. Visualization of average absolute value of trained weights within

CONYV layers of SWANNSs. Colors encode the connectivity strength between
layers with red being the strongest and white denoting no connection. The
marked rows with black box borders correspond to the input layer of the
networks.

ImageNet (AlexNet) benchmarks. Fig. 13 presents a heat map
of the average absolute values of weights connecting each pair
of CONYV layers.

Each square at position (/1,/7) of the heatmap represents
the strength of the connections between layers /i and I
where [y denotes network input. Color shades of orange, red
and maroon indicate strong inter-layer dependency while the
white color indicates that no connections are present between
the corresponding layers in SWANN. We summarize our
observations based on the heat map as the following:

1) Each layer has strong connections to its non-subsequent

layers indicating that long-range edges established in
SWANN are crucial to performance.
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2) The input layer has spread weights across all layers
of the network which demonstrates the importance of
connections between earlier and deeper layers.

3) SWANN preserves the strong connections between one
layer and the immediately proceeding layer, thus, main-
taining the conventional DNN data flow.

VI. CONCLUSION AND FUTURE WORK

We propose a novel methodology that adaptively modifies
conventional feed-forward DL models to new architectures,
called SWANN, that fall into the category of small-world
networks—a class of complex graphs used to study real-
world models such as human brain and the neural networks
of animals. By leveraging the intriguing features of small-
world networks, e.g., enhanced signal propagation speed and
synchronizability, SWANNs enjoy improved data flow within
the network, resulting in substantially faster convergence speed
during training. Our small-world models are implemented via
sparse connections from each DNN layer to all succeeding
layers. Such sparse convolutions enable SWANNS to benefit
from long-range connections while mitigating the redundancy
in the parameter space existent in prior art.

As our experiments demonstrate, SWANNs are able to
achieve state-of-the-art accuracy in & 2.1x lower number of
training iterations, on average. Furthermore, compared to a
densely-connected architecture, SWANNs achieve comparable
accuracy while having 10x reduction in the number of para-
meters. In summary, due to their optimal graph connectivity
and fast response to training, SWANNs can be advantageous
for on-device learning in embedded applications.

Current implementation of SWANN leverages regular dense
operations from the PyTorch library to realize sparse convolu-
tions. As such, we see an average of ~ 27.7% increase in the
inference runtime due to the overhead of added connections.
However, ongoing advances in both software and hardware
fronts provide several new opportunities to take advantage
of the high sparsity in SWANNs and achieve performance
improvements. Developing specialized deep learning compil-
ers and leveraging the state-of-the-art sparse compute ker-
nels [35] are exciting directions to be explored in future work.
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