
Compacting Privacy-Preserving k-Nearest Neighbor
Search using Logic Synthesis

Ebrahim M. Songhori
Dept. of ECE

Rice University
Houston, TX, USA

ebrahim@rice.edu

Siam U. Hussain
Dept. of ECE

Rice University
Houston, TX, USA

siam.umar@rice.edu

Ahmad-Reza Sadeghi
Technische Universität
Darmstadt, Germany
ahmad.sadeghi@

trust.cased.de
Farinaz Koushanfar

Dept. of ECE
Rice University

Houston, TX, USA
farinaz@rice.edu

ABSTRACT
This paper introduces the first efficient, scalable, and prac-
tical method for privacy-preserving k-nearest neighbors (k-
NN) search. The approach enables performing the widely
used k-NN search in sensitive scenarios where none of the
parties reveal their information while they can still coop-
eratively find the nearest matches. The privacy preserva-
tion is based on the Yao’s garbled circuit (GC) protocol. In
contrast with the existing GC approaches that only accept
function descriptions as combinational circuits, we suggest
using sequential circuits. This work introduces novel trans-
formations, such that the sequential description can be eval-
uated by interfacing with the existing GC schemes that only
accept combinational circuits. We demonstrate a great effi-
ciency in the memory required for realizing the secure k-NN
search. The first-of-a-kind implementation of privacy pre-
serving k-NN, utilizing the Synopsys Design Compiler on a
conventional Intel processor demonstrates the applicability,
efficiency, and scalability of the suggested methods.

Keywords
Secure Function Evaluation, Garbled Circuit, Logic Design,
Logic Synthesis, Nearest Neighbor, k-NN, Data Mining,
Privacy-Preserving

1. INTRODUCTION
The search for similarities has a wide range of applications

in data mining, such as finding close matches in images, local
features, biological and genome data, and multimedia sys-
tems [28]. The most extensively used function for similarity
search is the k-nearest neighbor (k-NN). For a given dataset
S of n points in a multi-dimensional space w, and a query q,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
DAC ’15, June 07-11, 2015, San Francisco, CA, USA
Copyright 2015 ACM 978-1-4503-3520-1/15/06 ...$15.00
http://dx.doi.org/10.1145/2744769.2744808

the k-NN search finds a subset of S with k points that are
closest to q. Numerous works have focused on development
of efficient k-NN search, where the underlying assumption is
that the dataset S and the query point q are public. For ex-
ample, it is well known that the approximate search speed of
k-NN can be dramatically improved by projecting the data
into smaller hash tables [1, 31]. However, such approxima-
tion methods are orthogonal to our effort. We focus on the
basic textbook k-NN search which could also be accelerated
with the known approximations.

In a number of scenarios, the data and the query are sensi-
tive and it is important to maintain privacy while performing
the search. This has motivated the development of privacy-
preserving k-NN search [29]. The existing works assume
that the parties each own a private dataset, while the query
q is not private; they focus on devising higher-level proto-
cols for privacy-preserving similarity search and proofs of
privacy [28,29]. These works mostly leverage homomorphic
encryption to perform a secure function evaluation (SFE).
Homomorphic encryption enciphers the data (plaintext) in
such a way that performing a mathematical function on the
encrypted information, and then decrypting the result, pro-
duces the same answer as performing an analogous oper-
ation on the plaintext. Since the first fully homomorphic
encryption was proposed about 5 years ago [8], numerous
protocol-level and implementation-level advancements have
been made. Even so, the implementations are still rather
inefficient and impracticable for real applications.

This paper suggests the first efficient and scalable method-
ology for privacy-preserving k-NN search that is imple-
mentable on embedded processors. In contrast to the ex-
isting literature that assumes private datasets and known
query, we assume a more general case of both private dataset
and private query. Our methodology for providing a SFE is
based on Yao’s Garbled Circuit (GC) that is currently con-
sidered the most effective way to preserve privacy [4, 13].
Note that the use of GCs for the generic problem of privacy
preserving data mining has been proposed, but not imple-
mented [20]. GC requires that the function is represented
as a binary circuit. It encrypts the truth tables of Boolean
gates in the circuit. The input values are used as to de-
crypt the output value of the gates. All the garbled circuits

suggested to date only support one pass, directed acyclic
circuits, a.k.a., combinational circuits. The only available
implementation of the privacy-preserving similarity search
using the GC protocol is for the 1-NN search, where the cir-
cuit size was linearly increasing with the dataset size [17].
This increase is due to the fact that conventional combina-
tional logic representation is not scalable.

To implement a GC, one needs to compile the higher-level
description of the functions to the Boolean logic suitable for
garbling. For this purpose, several custom compilers have
been developed by the security and software/compiler com-
munities [9, 11, 19, 23]. These compilers either use a custom
library for a general purpose programming language [23], or
introduce transformations for performing compile-time cir-
cuit garbling and on-the-fly gate generation [19]. Since these
compilation methods are built upon the combinational logic
model, they all suffer from the scalability issue.

Our work is the first to synthesize and optimize the GC
for performing privacy preserving k-NN using a sequential
representation. Instead of relying on custom compilers, we
follow the recent TinyGarble methodology [30]. TinyGar-
ble views the compilation of the general sequential circuit
as a special case of logic synthesis. By defining new custom
libraries and design objective/constraints, we demonstrate
that utilizing standard logic synthesizers addresses the chal-
lenges in privacy preserving k-NN. As a result, we can store
the GC and perform the privacy preserving k-NN search
with an unprecedented efficiency.

Problem Statement. Alice has a query q and Bob has
a dataset S. They want to jointly compute the k nearest
neighbors of q in S such that Bob does not learn anything
about q and Alice does not learn anything about S except
the nearest neighbors.

Contributions. In brief, our contributions are as follows:

• Introducing the first efficient, practicable, and scalable
methodology for privacy-preserving k-NN search as-
suming that the dataset and query are each privately
held. The method is based on the Yao’s GC protocol
and implementable on embedded processors.
• Proposing a sequential circuit description for privacy-

preserving k-NN search using Yao’s Garbled Circuit
protocol (instead of the known combinational repre-
sentation). New transformations are created such that
the sequential k-NN implementation are securely eval-
uated by interfacing with the available (combinational)
cryptographic garbling schemes.
• Development of new custom libraries to generate op-

timized circuits for k-NN search using the standard
logic synthesis tools. This is the first time that con-
ventional logic synthesis is utilized for secure function
evaluation/GC of k-NN.
• Reduction in the size of the required memory for GC

from O
(
nw

)
to O

(
w
)

compared with the best known
GC implementation of 1-NN [17]. Our scalable imple-
mentation requires a memory in the order of O

(
kw

)
for k-NN search. Note that k-NN search was imprac-
ticable earlier (for large n) due to the linear growth of
the combinational representation.
• Proof-of-concept implementation of privacy preserving

k-NN utilizing the Synopsys Design Compiler on an
Intel processor. For example, the circuit size for k-NN
search with w = 31, k = 8 is only 41.8KB.

2. PRELIMINARIES
Consistent with most literature in the area of GC and its

implementations, we assume an honest but curious attack
model [2, 9, 11,19,23].

2.1 Oblivious Transfer
Oblivious Transfer (OT) is a cryptographic protocol exe-

cuted between a sender S and a receiver R, where R oblivi-
ously selects one of the inputs provided by S. More precisely,
in an 1-out-of-n OTn

1 , S provides an n-tuple (x1, . . . , xn); R
provides a selection number r with 1 ≤ r ≤ n and obtains
xr as the output [25]. A special case of an OT protocol is
1-out-of-2 for binary selection.

2.2 Yao’s Garbled Circuits Protocol
Yao’s garbled circuits [32] is a protocol between two par-

ties, Alice and Bob, allowing them to compute a function
on their secret inputs. More precisely, Alice, called creator,
encrypts the function f to be computed where f is rep-
resented as a combinational Boolean circuit. To do this,
the plain binary values are garbled-they are mapped to ran-
dom symmetric keys and for each gate of the circuit, an
encrypted truth table is generated that allows computation
of gate’s output key given its input keys. Alice sends the
encrypted circuit along with her corresponding encrypted
inputs to Bob, called evaluator. Now to evaluate f , Bob
needs to obtain his inputs without revealing them to Al-
ice. For this, Bob obtains his encrypted inputs obliviously
through an 1-out-of-2 OT protocol and uses them to evaluate
the encrypted function gate by gate. Finally, Alice provides
a mapping from the encrypted output to plain output.

2.3 State-of-the-art GC optimizations
Our implementation adopts the state-of-the-art optimiza-

tions for garbled circuits, namely: free-XOR, row reduction,
and garbling with a fixed-key cipher.

In the free-XOR method, Alice generates a global random
(k − 1)-bit value R which is known only to her. During
garbling operation, she produces a key, X0, for the binary
value 0 and computes the other key X1 as X1 = X0 ⊕
(R ‖ 1)1. With this convention, encrypting an XOR gate is
simplified as it needs no cryptographic encryption and the
keys for its output g can be computed as Xg = Xa ⊕ Xb

where a and b are the inputs [18].
Using the row-reduction optimization reduces the size of

the non-XOR gate truth tables by 25%. Instead of randomly
emitting tokens for the gate output, they are generated as
a function of the input tokens. Alice produces the output
token such that the first entry of the garbled table becomes
all 0. Thus, the first entry need not be sent [26].

Bellare et al. proposed garbling with a fixed-key cipher
which results in an efficient garbling/evaluation of non-XOR
gates by a fixed-key AES [2]. The proof of security given in
their paper is in the random permutation model, as long as
every AES call gets a unique-per-gate identifier. We adopt
this approach as our GC scheme, while we devise new trans-
formations to satisfy the uniqueness of the identifier.

3. RELATED WORK
The related literature in realizing privacy-preserving k-

NN search has mainly focused on using homomorphic en-

1‖ denotes binary concatenation.

cryption as the enabling cryptographic primitive [28,29]. In
their protocol, two parties perform k-NN search locally on
their respective private dataset for a public query and then
privately combine their results to form the k-NN. In con-
trast with these works, we adopt a more general setting in
which one party holds a private dataset and the other one
provides a private query. Moreover, we only rely on Yao’s
GC protocol which is known to be much more efficient SFE
protocol than homomorphic encryption [4, 13]. The use of
GC for privacy preserving data mining has been suggested,
but the existing literature focused on theoretical/protocol
aspects and not implementation [20]. Leveraging our se-
quential description, this paper proposes the first scalable
implementation and a low-overhead realization of secure k-
NN on a conventional processor.

The work on generating Boolean functions for GC can be
broadly classified into three categories: cryptographic primi-
tives such as [2,23], transformations at the logic-level such as
[18], and compiler/software techniques for mapping GC to
the Boolean logic including [11,19,23]. Our work is orthogo-
nal to the advances in the GC cryptographic primitives and
logic-level transformations. We provide a compilation from
the functional description to the Boolean logic which can be
optimized and interfaced for any GC scheme. Therefore, we
only describe the related work in the area of compiler/soft-
ware techniques.

In the area of mapping and optimizing functions into
Boolean logic for GC, the related literature has suggested de-
veloping custom compilers [9,11,19,23], custom libraries for
conventional high-level compilers [10, 14, 22], hardware ac-
celerators[2, 16,27], and mobile device implementation [24].

Following the introduction of the first compiler for GC,
called Fairplay [23], a number of researchers have focused
on providing a custom compiler to interpret high level pro-
cedural language and map it to a circuit description language
[9, 11]. The most scalable existing compiler is PCF, which
introduces loops that, if given manually in the high level lan-
guage, are kept until the GC evaluation [19]. Our sequential
description of the k-NN function that we input in the HDL
format is much more compact than the high-level (software)
loop embracing in PCF. Note that PCF is also based upon
a combinational description.

Another class of proposed GC compilation methods lever-
age a library-based technique along with conventional soft-
ware compilers. Some examples include FastGC [14], VM-
CRYPT [22], and FastGC extension to re-usable sub-circuits
[10]. Our work is inspired by TinyGarble methodology [30].
We are the first to adapt a hardware description language
and conventional logic synthesis for the important problem
of privacy preserving of k-NN. Our method is automated,
while it also benefits from custom logic-level libraries.

A number of researchers have suggested development of
hardware accelerators for GC, including GPUs [15,27], FP-
GAs [16], or using the AES-NI available in recent CPUs [2].
Our work is orthogonal to this domain and can benefit from
building accelerators for our sequential representation.

Using the GC for secure computing on resource con-
strained devices such as mobile/embedded platforms was
suggested in [12]. A recent work in this area described a
protocol for GC that relies on a smartcard embedded in
the mobile device [7]. These implementations can greatly
benefit from the scalable and efficient k-NN methodology
introduced in this work. To overcome the limitations of

resource-constrained devices, a set of relevant work in this
area suggested outsourcing the GC generation and evalu-
ation to cloud servers [5, 6]. Our work demonstrates the
feasibility of on-device GC implementation.

4. NEAREST NEIGHBORS SEARCH CIR-
CUIT

In this section, we present implementation of privacy-
preserving k-NN search using Yao’s GC protocol. First, we
describe the optimized circuit generation for GC using logic
synthesis tools. Next, we outline the implementation of 1-
NN search using conventional GC based on combinational
circuit. Lastly, we discuss the compact realizations of 1-NN
and k-NN search based on sequential circuit.

Without any loss of generality, we assume the distance
function for finding the nearest neighbors is Hamming dis-
tance in the following description.

4.1 Circuit Generation
We customize the flow of the standard logic synthesis

tools to generate circuits optimized for GC protocol. As
mentioned in Section 2.3 for GC with free-XOR optimiza-
tion, there is a need to minimize the number of non-XOR
gates in the Boolean representation. We perform two ma-
jor customization in the synthesis flow. First, we create a
new synthesis library to aid the conversion of the arithmetic
and conditional operations to GC-optimized logical mod-
ules. Second, we develop a technology library to guide the
mapping of the logic to the circuit netlist.

4.1.1 Synthesis Library
To realize the k-NN search, a set of basic arithmetic

and conditional operations consisting of comparator, mul-
tiplexer, and Hamming distance are required. We create a
custom synthesis library that includes the minimum non-
XOR implementations of these operations. A w-bit com-
parator (COMPw) is implemented using only w non-XOR
gates [17]. A w-bit multiplexer (MUXw) is realized us-
ing w non-XOR gates [18]. A w-bit Hamming distance
(HAMMINGw) is devised using w − dlog2(w)e non-XOR
gates where w = 2k − 1, k ∈ N [3]. In all these modules,
the total number of gates is O

(
w
)
.

4.1.2 Technology Library
The technology library includes logical descriptions of ba-

sic units and their parameters like delay and area. The syn-
thesis tool uses the technology library to generate a circuit
optimized for given objectives and constraints. We design a
custom technology library that contains 2-input gates (ac-
cording to the requirement of the GC protocol). We set the
area of XOR gates to 0 and the area of non-XOR gates to 1.
The circuits are synthesized with the area constraint set to
0 so that the synthesis tool’s objective becomes minimizing
the number of non-XOR gates in the generated circuit.

An additional feature of this library is inclusion of non-
standard gates (other than basic gates like NOT, AND,
NAND, OR, NOR, XOR, and XNOR) to increase the flexi-
bility of the mapping process. For example, the logical func-
tions F = A ∨ B and F = (∼ A) ∨ B requires equal time
in garbling/evaluation. However, using only standard gates
the second function will require a NOT gate and an OR
gate. We include four such non-standard gates which have

S[0]

S[1]

S[n-1]

S[2]

q

o

mindistance

distance

mindistance

min

distance

Figure 1: Combinational circuit for 1-NN. It consists of n
Hamming distance and n− 1 min modules.

an inverted input.

4.2 Combinational Garbled Circuit
As stated in Section 2.2, all previous implementations of

GC protocol use a combinational description. To start our
implementation for the special case of 1-NN search, we look
for the closest point (o) to the query point (q) in the dataset
(S). In the privacy-preserving setting, there is a need to
compare the query point to all the points in the dataset.
This is because the (private) intermediate search values can-
not be utilized to bound the search, e.g., binary search.

Figure 1 shows the combinational circuit for 1-NN. The
implementation uses n Hamming distance modules, and n−1
min modules (consisting of 1 COMP and 2 MUXs) to find
the nearest point. One MUX selects the smaller distance for
later comparison while the other one finds the point corre-
sponding to that distance.

The total number of gates in the 1-NN combinational cir-
cuit is as follows:

of gates = n×HAMMINGw

+ (n− 1)× (COMPdlog2(w)e

+ MUXw + MUX dlog2(w)e)
⇒ # of gates ∈ O

(
nw

)
.

The circuit should be garbled/evaluated only once. Thus,
the time complexities of garbling/evaluation is O

(
nw

)
.

4.3 Sequential Garbled Circuit
Sequential circuits can be used as a very compact circuit

description for both real hardware and GC protocol. A se-
quential circuit is composed of a combinational circuit and a
set of registers that stores the intermediate values. We mod-
ify the garbling scheme such that for each sequential cycle,
it garbles/evaluates the combinational part and stores the
garbling keys for the registers. The stored keys are used
as inputs in the next cycle. To ensure security, each gate
should have a unique identifier for each time that it is gar-
bled/evaluated. Since in the sequential circuit each gate is
garbled/evaluated multiple times, we use the combination
of gate index and cycle index as a unique identifier for each
gate invocation. Thereby, the proof of security provided in
[2,21] also applies to our garbling scheme. We now describe
the sequential 1-NN search implementation followed by k-
NN implementation.

o

reg

min
distance

q
S[c]

Figure 2: Sequential circuit for 1-NN. It consists of 1 Ham-
ming distance and 1 min module. For a dataset of size n,
the circuit is required to be garbled/evaluated n times.

reg[k-1]min

reg[0]

max

reg[k-2]

distanceq
S[c]

reg[k-1]

min

reg[0]

reg[1]min max

reg[0]reg[1]

o[0]

o[1]

o[k-1]

Figure 3: Sequential circuit for k-NN. It consists of 1 Ham-
ming distance, k min, and k − 1 max modules. It requires
to be evaluated n times where n is the size of the dataset S.

4.3.1 Sequential 1-NN
Our 1-NN search sequential circuit is implemented with

only 1 Hamming distance and 1 min module. Figure 2 illus-
trates the sequential circuit for 1-NN search. In each cycle c,
the circuit computes the distance between q and S[c]. Next,
it compares the resulting distance with the stored minimum
distance in the register (reg). It then stores the minimum
distance along with the nearest point until cycle c. The total
number of cycles required to compute 1-NN is n.

The total number of gates in the 1-NN sequential circuit
is as follows:

of gates = HAMMINGw

+ (COMPdlog2(w)e

+ MUXw + MUX dlog2(w)e)
⇒ # of gates ∈ O

(
w
)
.

The circuit should be garbled/evaluated n times. Thus,
the time complexities of garbling/evaluation are the same as
the combinational circuit and equal to O

(
nw

)
.

4.3.2 Sequential k-NN
In k-NN search, the goal is to find the k nearest points to

the query in the dataset. We expand the sequential circuit
for the 1-NN to store the k nearest points. For this purpose,
we implement a priority queue with depth of k which receives
one point at each cycle. The priority of each point is equal
to its distance to the query. Figure 3 shows the sequential
circuit for the k-NN search. The circuit has 1 Hamming
distance, k min, and k− 1 max modules. The max module,
like min, consists of 1 COMP and 2 MUXs.

The total number of gates in the 1-NN sequential circuit
is as follows:

of nonXORs = HAMMINGw

+ (2k − 1)× COMPdlog2(w)e

+ (2k − 1)× (MUXw + MUX dlog2(w)e)

⇒ # of nonXORs ∈ O
(
kw

)
.

The circuit should be garbled/evaluated n times. Thus,
the time complexities of garbling/evaluation are the same as
the combinational circuit and equal to O

(
nkw

)
. Note that

due to the unscalability of combinational k-NN search, we
did not include its implementation.

5. EVALUATION
The circuit generation is done with Synopsis Design Com-

piler (DC) 2010.03-SP4. We also use the Synopsis Library
Compiler from DC package to interpret our custom technol-
ogy libraries. For garbling and evaluation we use the Just-
Garble framework [2] which we modified to support sequen-
tial circuits. JustGarble exploits the cryptographic permu-
tations realizable by fixed-key AES for GC operations. We
run the framework on a system with Ubuntu 14.10 Desktop,
12GB of memory, and Intel Core i7-2600 CPU at 3.4GHz to
assess the timing performance.

The metrics used to evaluate the performance of our im-
plementations are as follows:
• The Circuit Size (CS) in Bytes is computed as

CS = 24× q,

where q is total number of gates. We store 2 indices
(16B) and one type (8B) for each gate in circuit de-
scription file.
• Circuit Size Efficiency (CSE) is defined as

CSE =
CSC

CSS
,

where CSC is the size of the combinational circuit and
CSS is that of the sequential circuit.
• The garbling time is calculated as

T = # of non-XOR×Tnon-XOR + # of XOR×TXOR,

where Tnon-XOR is the execution of a non-XOR gate
and TXOR is the execution of a XOR gate, which are
164 clock cycles (cc) and 62cc respectively in the spec-
ified system. We measured these values as the mean
of 10,000 garbling trials.

The circuit size and timing evaluation for 1-NN search is
reported in Table 1 for different values of w and n. For same
w, the circuit size remains constant for sequential implemen-
tation. Therefore, the CSE increases linearly with n. As can
be seen, the garbling times are almost equal for both com-
binational and sequential circuits. The small improvements
in garbling time for sequential circuit is due to the more effi-
cient optimization in the synthesis tool when circuit is small
(sequential). For example where n = 256, w = 31, the
time of garbling using combinational circuit is 6.83× 106cc
(2.01ms in our evaluation setup) while the one using sequen-
tial circuit is 6.24×106cc (1.84ms) which is 8.7% faster than
combinational circuit.

The circuit size and timing evaluation for k-NN search is
reported in Table 2. Since its combinational evaluation is not

practical, we do not compare it in the way we did for 1-NN.
The CS for the largest circuit in this work (w = 31, k = 8)
is 41.8KB which will fit easily in embedded systems. As an
example where n = 128, w = 31, k = 8, the garbling time
would be 128k × 173848cc = 22.8× 109cc (6.7s).

6. CONCLUSION
This paper presents an methodology for generation of

highly compact and scalable privacy-preserving k-nearest
neighbor (k-NN) search using garbled circuits (GC). We
are the first to suggest a sequential description of k-NN,
which enables generation of a compact Boolean GC. Our
newly created custom libraries allow us to leverage the estab-
lished powerful logic synthesis tools to optimize the (k-NN)
Boolean expressions for GC. We introduce transformations
that make the k-NN sequential expressions transparent to
the available garbling schemes that are based on the combi-
national description. We show the first-of-a-kind implemen-
tation of privacy preserving k-NN using the Synopsys Design
Compiler. It requires only 41.8KB storage for the 32-bit 8-
NN search. Our implementation shows the practicability,
efficiency, and scalability of the suggested methods.

7. ACKNOWLEDGEMENTS
We would like to thank anonymous reviewers for their

helpful comments and suggestions to improve this work.
This work is partially supported by an Office of Naval Re-
search grant (ONR-R17460), a National Science Founda-
tion grant (CNS-1059416), and U.S. Army Research Of-
fice grant (ARO-STIR-W911NF-14-1-0456) to ACES lab at
Rice University. The work of the author at TU Darm-
stadt is in parts supported by the European Union’s Sev-
enth Framework Program (FP7/2007-2013) grant agreement
n. 609611 (PRACTICE), the German Science Founda-
tion (DFG) as part of project E3 within the CRC 1119
CROSSING, the German Federal Ministry of Education and
Research (BMBF) within EC SPRIDE, and the Hessian
LOEWE excellence initiative within CASED.

8. REFERENCES
[1] A. Andoni and P. Indyk. Near-optimal hashing

algorithms for approximate nearest neighbor in high
dimensions. In FOCS, 2006.

[2] M. Bellare, V. Tung Hoang, Sriram K., and
P. Rogaway. Efficient garbling from a fixed-key
blockcipher. In S&P. IEEE, 2013.

[3] J. Boyar and R. Peralta. Concrete multiplicative
complexity of symmetric functions. In MFCS.
Springer, 2006.

[4] Brenner, perl, and Smith. hcrypt Secure Function
Evaluation (SFE) project. https://hcrypt.com/sfe/.

[5] H. Carter, C. Lever, and P. Traynor. Whitewash:
Outsourcing garbled circuit generation for mobile
devices. In ACSAC. ACM, 2014.

[6] H. Carter, B. Mood, P. Traynor, and K. Butler.
Secure outsourced garbled circuit evaluation for
mobile phones. In USENIX Security. USENIX, 2013.

[7] D. Demmler, T. Schneider, and M. Zohner. Ad-hoc
secure two-party computation on mobile devices using
hardware tokens. In USENIX Security. USENIX, 2014.

[8] C. Gentry. Fully homomorphic encryption using ideal
lattices. In STOC, 2009.

Table 1: Circuit size and timing evaluation for 1-NN search.

 W

 N 128 256 512 128 256 128 256

 Total Gates 9044 18128 36304 19637 39349 40981 82069

 Non-XOR 2160 4336 8688 4325 8677 8530 17106

 CS(B) 217056 435072 871296 471288 944376 983544 1969656

 T(cc) 781048 1566208 3137024 1658644 3324692 3410882 6833090

 Total Gates

 Non-XOR

 CS(B)

 T(cc) 713984 1427968 2855936 1523200 3046400 3120640 6241280

Comparison CSE 145.9 292.4 585.5 144.4 289.3 144.8 290.0

15 31

Combinational

Sequential

62 136 283

17 34 67

7

1488 3264 6792

Table 2: Circuit size and timing evaluation for k-NN search.

W

K 2 4 8 2 4 8 2 4 8

Total Gates 146 270 518 288 511 963 555 968 1784

Non-XOR 44 92 188 81 167 339 150 308 620

CS(B) 3504 6480 12432 6912 12264 23112 13320 23232 42816

T(cc) 13540 26124 51292 26118 48716 94284 49710 91432 173848

15 317

[9] W. Henecka, S. Kögl, A. Sadeghi, T. Schneider, and
I. Wehrenberg. TASTY: Tool for Automating Secure
Two-partY computations. In CCS. ACM, 2010.

[10] W. Henecka and T. Schneider. Faster secure two-party
computation with less memory. In ASIACCS. ACM,
2013.

[11] A. Holzer, M. Franz, S. Katzenbeisser, and H. Veith.
Secure two-party computations in ANSI C. In CCS.
ACM, 2012.

[12] Y. Huang, P. Chapman, and D. Evans.
Privacy-preserving applications on smartphones. In
HotSec. USENIX, 2011.

[13] Y. Huang, D. Evans, and J. Katz. Private set
intersection: Are garbled circuits better than custom
protocols? In Network and Distributed Security
Symposium (NDSS), 2012.

[14] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster
secure two-party computation using garbled circuits.
In USENIX Security. USENIX, 2011.

[15] N. Husted, S. Myers, A. Shelat, and P. Grubbs. GPU
and CPU parallelization of honest-but-curious secure
two-party computation. In ACSAC. ACM, 2013.

[16] K. Järvinen, V. Kolesnikov, A. Sadeghi, and
T. Schneider. Garbled circuits for leakage-resilience:
Hardware implementation and evaluation of one-time
programs. In CHES. Springer, 2010.

[17] V. Kolesnikov, A. Sadeghi, and T. Schneider.
Improved garbled circuit building blocks and
applications to auctions and computing minima. In
CANS. Springer, 2009.

[18] V. Kolesnikov and T. Schneider. Improved garbled
circuit: Free xor gates and applications. In ICALP.
Springer, 2008.

[19] B. Kreuter, A. Shelat, B. Mood, and K. RB Butler.
PCF: A portable circuit format for scalable two-party
secure computation. In USENIX Security, 2013.

[20] Y. Lindell and B. Pinkas. Privacy preserving data

mining. In CRYPTO, 2000.

[21] Y. Lindell and B. Pinkas. A proof of Yao’s protocol
for secure two-party computation. Journal of
Cryptology, 2009.

[22] L. Malka. Vmcrypt: modular software architecture for
scalable secure computation. In CCS. ACM, 2011.

[23] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay
– a secure two-party computation system. In USENIX
Security. ACM, 2004.

[24] B. Mood, L. Letaw, and K. Butler. Memory-efficient
garbled circuit generation for mobile devices. In FC.
Springer, 2012.

[25] M. Naor and B. Pinkas. Computationally secure
oblivious transfer. Journal of Cryptology, 2005.

[26] M. Naor, B. Pinkas, and R. Sumner. Privacy
preserving auctions and mechanism design. In ACM
Conference on Electronic Commerce. ACM, 1999.

[27] S. Pu and J. Liu. Computing privacy-preserving edit
distance and Smith-Waterman problems on the GPU
architecture, 2013.

[28] Y. Qi and M. J. Atallah. Efficient privacy-preserving
k-nearest neighbor search. In ICDCS, 2008.

[29] M. Shaneck, Y. Kim, and V. Kumar. Privacy
preserving nearest neighbor search. In ICDMW, 2006.

[30] E. M. Songhori, S. U. Hussain, A. Sadeghi,
T. Schneider, and F. Koushanfar. Tinygarble: Highly
compressed and scalable sequential garbled circuits. In
S&P. IEEE, 2015.

[31] Y. Weiss, A. Torralba, and R. Fergus. Spectral
hashing. In NIPS, 2009.

[32] Andrew C-C Yao. How to generate and exchange
secrets. In FOCS. IEEE, 1986.

