
IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 11, NO. 4, DECEMBER 2021 611

AutoRank: Automated Rank Selection for
Effective Neural Network Customization

Mojan Javaheripi , Graduate Student Member, IEEE, Mohammad Samragh , Student Member, IEEE,

and Farinaz Koushanfar , Fellow, IEEE

Abstract— Tensor decomposition is a promising approach for
low-power and real-time application of neural networks on
resource-constrained embedded devices. This paper proposes
AutoRank, an end-to-end framework for customizing neural net-
work decomposition using cross-layer rank-selection. For many-
layer networks, determining the optimal decomposition ranks is
a cumbersome task. To overcome this challenge, we establish
a state-action-reward system that effectively absorbs inference
accuracy and platform specifications into the rank-selection
policy. Our proposed framework brings platform characteristics
and performance in the customization loop to enable direct
incorporation of hardware cost, e.g., runtime and memory
footprint. By means of this hardware-awareness, AutoRank cus-
tomization engine delivers high accuracy decomposed deep neural
networks with low execution cost. Our framework minimizes the
engineering cost associated with rank selection by providing an
automated API for AutoRank that is compatible with popular
deep learning libraries and can be readily used by developers.

Index Terms— Computational and artificial intelligence, neural
networks, artificial neural networks.

I. INTRODUCTION

W ITH the advancements in data acquisition tools and the
growing desire for smart applications, deep neural net-

works (DNNs) are increasingly adopted in various autonomous
platforms, e.g., self-driving cars, drones, and robotics. In order
to satisfy the platform resource constraints as well as real-
time requirements, a line of research focuses on developing
algorithms for model compression with the goal of reducing
the computational complexity/memory footprint of DNNs.
Examples of explored approaches include using quantized/
low-precision weights [1], [2], parameter pruning [3], [4],
developing efficient network architectures [5], and tensor
decomposition [6]. Each proposed DNN customization method
for constrained settings is associated with certain benefits
and limitations. For example, pruning can lead to a high

Manuscript received April 30, 2021; revised October 18, 2021; accepted
October 27, 2021. Date of publication November 10, 2021; date of cur-
rent version December 13, 2021. This work was supported in part by the
National Science Foundation (NSF) under Award 2016737, in part by the
Semiconductor Research Corporation (SRC) under Award 2899.001, in part by
the Intelligence Advanced Research Projects Activity (IARPA) under Award
2018-18022100004, and in part by the Intel Private AI Institute. This article
was recommended by Guest Editor H. Homayoun. (Corresponding author:
Mohammad Samragh.)

The authors are with the Department of Electrical and Computer Engineer-
ing, UC San Diego, San Diego, CA 92093 USA (e-mail: mojan@ucsd.edu;
msamragh@ucsd.edu; farinaz@ucsd.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/JETCAS.2021.3127433.

Digital Object Identifier 10.1109/JETCAS.2021.3127433

Fig. 1. Normalized runtime breakdown of the AlexNet model evaluated on
different platforms.

model compression rate, but it requires custom hardware
accelerators (e.g., FPGA or ASIC) to effectively leverage the
existent sparsity patterns in the model [7]. Efficient architec-
tures can benefit execution on general purpose processors [5],
but designing such networks for various tasks and datasets
incurs a high engineering cost. Tensor decomposition and
low-rank approximation of DNN parameters allow for efficient
execution on CPU/GPU platforms; nevertheless, determining
the optimal approximation ranks that conform to the accuracy
requirements and hardware constraints is a standing challenge.

To ensure an effective DNN compression using tensor
decomposition, several challenges need to be addressed.
A number of existing methods perform the decomposition
one layer at a time, thus requiring per-layer fine-tuning of the
network which incurs a significant retraining cost [8]. Authors
of [6] propose to perform whole-network compression. Their
method overlooks the DNN inter-layer dependencies, which
directly affects accuracy. Moreover, the rank-selection strategy
must be designed in compatibility with the ultimate goal of
deploying the decomposed model on the desired hardware
platform. As such, it is essential to take into account the under-
lying hardware specifications when configuring the decom-
position, a concept that is missing in prior works [9], [10].
To illustrate the importance of platform-aware decomposition,
Fig. 1 presents the relative runtime associated with convolu-
tion (CONV) and fully-connected (FC) layers of the popular
AlexNet [11] architecture, measured on different platforms.1

As seen, the FPGA platform is strictly memory-bounded,
hence, FC layers need to be prioritized for decomposition.

This paper proposes AutoRank, an intelligent, automated
framework that performs cross-layer customized DNN decom-
position for any given network architecture and hardware plat-
form pair. Inspired by Reinforcement Learning, we establish a
state-action-reward system that incorporates inference quality
and hardware specifications into the rank-selection policy to

1The CPU/GPU measurements are obtained from Pytorch. The FPGA
measurement is by ChaiDNN [12] with 8-bit, 128-DSP setting.

2156-3357 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 12,2022 at 20:06:14 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-1404-527X
https://orcid.org/0000-0003-4062-8807
https://orcid.org/0000-0003-0798-3794

612 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 11, NO. 4, DECEMBER 2021

ensure a high performance in terms of inference accuracy
and runtime. AutoRank outperforms hand-crafted and heuristic
rank-selection methods on standard benchmark networks as
it achieves a higher compression rate, better preservation of
accuracy, and elimination of customization re-engineering. The
contributions of AutoRank are as follows:
• Introducing AutoRank, a holistic framework for

platform-aware DNN customization by parameter
decomposition.

• Devising a resource-profiling scheme to automate
the process of platform characterization for DNN
decomposition.

• Proposing the first hardware-aware automated policy that
performs DNN decomposition by simultaneously opti-
mizing for inference accuracy and hardware performance.

• Development of an API for fast adaptation of AutoRank
to smart DNN-based applications.

• Evaluating AutoRank on the challenging ImageNet clas-
sification benchmark. Our method achieves an average of
4.88×measured speedup using platform-aware decompo-
sition with an average of 0.62% top-5 accuracy decrease.

II. RELATED WORK

DNNs are known to be over-parameterized, meaning that the
trained network architectures can often be compressed without
a significant decrease in the inference quality [13], [14]. While
such redundancies are beneficial for faster convergence when
training the model in high-end cloud servers, executing com-
plex DNN architectures on embedded devices is a challenge.
To alleviate this problem, many researchers have worked
on various network compaction methodologies [15]. Among
these techniques, we focus on tensor decomposition, which is
particularly useful since the corresponding compressed DNN
does not require specialized hardware, e.g., FPGA or ASIC,
to ensure efficiency.

The effectiveness of Tensor decomposition for DNN accel-
eration has been shown in a line of contemporary research
[9], [16]. Authors of [8] propose to utilize CP decomposition to
accelerate CONV layers. They propose a one-layer-at-a-time
strategy where the DNN is fine-tuned after decomposing each
layer. The method proposed in [6] is the most relevant work to
AutoRank, where the authors utilize Tucker decomposition to
reduce the computations in CONV layers. Their approach fol-
lows a one-time, whole-network, compression and re-training
strategy. For rank selection, the authors suggest utilizing Vari-
ational Bayesian Matrix Factorization, which essentially aims
at minimizing the L2-norm of the tensor reconstruction error.
We argue that this approach is sub-optimal since the L2-norm
does not necessarily reflect the inference accuracy of the DNN.
In addition, such rank selection is oblivious to the underlying
hardware specifications and merely targets the number of
computations. To address these challenges, we propose to
formulate rank-selection as a state-action-reward system and
iteratively assign the ranks in each layer such that maximum
hardware performance is obtained with a minimal decrease
in the inference accuracy. Our optimization methodology is
devised to easily accommodate various hardware platforms
and performance metrics.

Fig. 2. Illustration of Tucker-3 decomposition for a 3-way tensor. The
reconstruction tensor is computed by performing n-mode multiplication in
each of the 3 directions [21].

On a separate track of research, reinforcement learning
has been used [17] to automate hyper-parameter selection for
channel pruning [18].

Similar to [17], we define a reward function for deci-
sion making; however, our methodology is different in that
AutoRank is an end-to-end framework which directly incor-
porates hardware cost into the decision policy. In addition,
since the state transitions in AutoRank are deterministic, our
methodology does not require training an RL agent and incurs
much lower overhead.

III. PRELIMINARIES

Tensor is a general term used to describe multi-dimensional
objects in mathematics. For instance, a scalar, a vector, and
a matrix are 0-way, 1-way, and 2-way tensors, respectively.
Tensor decomposition can be viewed as a methodology for
representing high-dimensional objects as a combination of
lower-way tensors. Well-known approaches for generic decom-
position include the Canonical Polyadic decomposition (also
known as the CANDECOMP/PARAFAC model) [19] and
Tucker decomposition [20]. In this paper, we leverage Tucker
decomposition to reduce the dimensionality of the trained
parameters within conventional DNNs for efficient execution
on embedded devices. Tucker decomposition aims to model a
d-way tensor by means of smaller orthogonal components. The
components, called projection matrices, are interconnected
via a core tensor and each component represents one direc-
tion of the original tensor. Decomposition is performed with
the objective of minimizing the squared error between the
original tensor and the reconstruction by small components.
Fig. 2 illustrates a Tucker-3 decomposition performed on a
3-way tensor and the resulting core tensor and three projec-
tion matrices. A lossy reconstruction of the original tensor
is achieved by performing n-mode multiplication (denoted
by ×n) [21] between the core tensor and projection matrices
where n ∈ {1, 2, 3}.

In a conventional DNN, the trainable parameters of CONV
layers form 4-way tensors denoted by W ∈ R

k×k×c× f , where
k is the window size, c is the number of input channels,
and f is the number of output channels. A generic Tucker
decomposition would decompose W in all 4 ways; However,
for the majority of DNNs studied in the literature, the window
size (k) is relatively small and therefore decomposing in the
k directions does not lead to better performance. As such,
we perform a Tucker-2 decomposition in the direction of input
(c) and output (f) channels for the CONV layers. By means of

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 12,2022 at 20:06:14 UTC from IEEE Xplore. Restrictions apply.

JAVAHERIPI et al.: AUTORANK: AUTOMATED RANK SELECTION FOR EFFECTIVE NEURAL NETWORK CUSTOMIZATION 613

Fig. 3. Illustration of Tucker-2 decomposition on a CONV layer. The
computational complexity in the decomposed layer (bottom) is lower than
that of the original (top) layer.

such decomposition, a CONV layer can be represented as three
consecutive layers depicted in Fig. 3. Here, the core tensor is
the middle CONV layer and the first and last CONVs are the
point-wise projection matrices.

IV. AUTORANK GLOBAL FLOW

A schematic overview of AutoRank framework is illustrated
in Fig. 4. In order to generate a decomposed DNN config-
uration that is customized to the pertinent hardware spec-
ifications, AutoRank sequentially performs three interlinked
stages, namely, hardware profiling, automated rank-selection,
and fine-tuning. Stages of AutoRank pipeline are specifically
designed such that they entirely separate the users from com-
plications of efficient DNN inference on resource-constrained
embedded devices.

A. Hardware Profiling

AutoRank utilizes a Hardware Profiling unit (Section V-A)
that investigates individual layers by examining a set of
pre-defined rank configurations, specifically selected accord-
ing to the layer’s input/output dimensionality. The result of
this stage is a list of layer configurations (ranks) and their
corresponding runtimes which is later used by the automated
policy maker in the Automated Rank-Selection stage.

B. Automated Rank-Selection

AutoRank framework eliminates the engineering cost
associated with developing heuristics or performing hand-
optimizations by means of an intelligent network modifier,
i.e., the Automated Rank-Selection module (Section V-B).
This module leverages a novel and fully-automated algorithm
primarily based upon capturing the trade-off between inference
accuracy and a specific cost measure, e.g., inference run-
time. The rank-selection module customizes the decomposition
ranks for all layers of the given DNN by iteratively performing
four tasks:

(i) The space of future-states is spanned where each state is
a possible global rank configuration for DNN layers.

(ii) For each state, the module runs inference on a small sub-
set of unseen data (validation set) to measure accuracy.

(iii) A customized reward is calculated such that it penalizes
loss of accuracy and favors cost enhancement, e.g., over-
all runtime reduction.

(iv) The state rendering the maximum reward is chosen and
the pertinent layer is decomposed accordingly. The future
search-space is then updated by removing redundant
states, i.e., those with a higher cost measure.

As the iterations proceed, the cost measure is decreased
at the expense of a decrease in the inference accuracy. The
algorithm terminates when the user-provided accuracy thresh-
old is reached. The output of the rank-selection module is a
list of customized rank configurations that lead to efficient
DNN architectures where the efficiency is described in terms
of the pre-defined cost measure. Based on the underlying
hardware constraints, this cost measure can be defined as the
total number of operations per-inference (FLOPs), runtime,
power, or model memory footprint, allowing AutoRank to be
compatible with various optimization objectives.

C. Fine-Tuning

Once the cross-layer configuration ranks are selected, the
DNN is decomposed accordingly and fine-tuned to recover
the accuracy degradation associated with the rank-selection
algorithm (Section V-C). In this stage, only a few training
epochs are sufficient to restore the accuracy. This incurs much
lower computational cost compared to the cost of training the
original uncompressed DNN.

V. METHODOLOGY

A. Hardware Profiling

An efficient DNN compression scheme is one that takes into
account the implications of the compaction method on physical
performance. To this end, AutoRank identifies the underlying
hardware and incorporates platform-specific metrics into the
rank selection policy. Such automated hardware identification
allows for a customized rank selection that is specifically
tailored to conform to the platform constraints, e.g., computing
power, memory bandwidth, or speed (runtime). In order to
fully automate such a rank-selection process, AutoRank first
gathers abstract information regarding the physical perfor-
mance during execution of the desired DNN architecture and
its decomposed variants. The gathered information is later
used in the automated rank-selection module (Section V-B)
to customize the decomposed architecture per hardware.

1) Problem Statement: The first step towards hardware
profiling is to specify the hardware optimization goal which
can take the form of minimizing runtime, memory footprint,
or power consumption. We perform hardware profiling by
measuring the cost (e.g., runtime) associated with the execu-
tion of individual layers in a given DNN as explained below.

2) Per-Layer Performance Identification: For each layer in
a given DNN, we quantize the possible decomposition ranks in
each direction into b bins. The number of bins directly controls
the granularity of the rank selection search-space. A higher
number of bins may result in decomposition configurations
with similar hardware cost. A lower number of bins enables a
faster search but may result in sub-optimal results. We found
that b = 8 provides a good balance between the aforesaid
properties for the benchmarks studied in this paper. For a

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 12,2022 at 20:06:14 UTC from IEEE Xplore. Restrictions apply.

614 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 11, NO. 4, DECEMBER 2021

Fig. 4. An overview of AutoRank framework consisting of three sequential stages, namely, hardware profiling, automated rank-selection, and fine-tuning.

CONV layer with c input and f output channels, the quantized
rank can have b2 possiblities:

R ∈ {(rc, r f)|rc ∈ { c
b
, . . . , c}, r f ∈ { f

b
, . . . , f }}. (1)

For each of these configurations, AutoRank executes decom-
posed layer and measures the cost. The gathered information
is then forwarded to the automated rank-selection module
(Section V-B) as cost(Rl), where the l superscript stands for
the layer index.

3) Overhead Analysis: The overhead of hardware profiling
is mainly due to the evaluation of the corresponding cost
measure per layer. For an L-layer DNN, the search overhead is
approximately b2×L×tavg where b is the number of quantized
ranks per direction and tavg is the average time required to
compute the output of one DNN layer. Note that there is no
need to perform parameter decomposition at this stage as the
costs do not depend on parameter values, i.e., random tensors
will also result in correct profiling. We emphasize that the
timing overhead of AutoRank resource profiling is negligible
compared to DNN training.

B. Automated Rank-Selection

The quest for higher accuracy has led moderns DNNs
towards deeper architectures that consist of many stacked
layers. In order to compress these complex architectures
without a significant loss of accuracy, one is required to care-
fully select the per-layer decomposition ranks. When applying
Tucker decomposition, the network compression rate and the
inference accuracy are directly determined by the per-layer
decomposition ranks, Rl = (rc, r f).

DNN decomposition can be particularly cumbersome for
sophisticated networks since the space of possibilities grows
exponentially with the number of layers. As a result, hand-
crafted customization is sub-optimal and tedious. Another
approach would be to perform a brute-force search among
all possible rank configurations in DNN layers. While this
methodology gives the absolute optimal solution, it has an
extremely high computational cost and is infeasible in real-
life scenarios. One attractive solution to perform an effec-
tive search is to utilize Reinforcement Learning (RL) [17].

However, even vanilla RL solutions can be costly and require
excessive hardware resources and time to train.

To overcome the aforementioned challenges, we propose an
iterative algorithm inspired by RL that aims to determine the
above-mentioned ranks across all layers, i.e., {R1, . . . , RL}
for an L-layer DNN. The objective of this algorithm is
to minimize a physical cost measure (e.g. runtime, power,
memory footprint, etc.) under a certain inference accuracy
requirement. Our proposed automated rank-selection incurs
significantly lower cost than pure RL-based solutions while
successfully achieving efficient DNN inference on embedded
hardware. We formulate the rank customization problem using
a state-action-reward system described below.

1) State: A state (S) corresponds to a list of per-layer
decomposition ranks, {R1, . . . , RL}, for all DNN layers.
Each state renders a certain accuracy, accS , and a certain

overall hardware cost, costS = ∑L
l=1 cost(Rl), where the

per-layer hardware costs are obtained by resource profiling
(Section V-A).

2) Action: An action ARl decomposes the weights of the
l-th layer with the selected ranks Rl . Each action leads to a
next state, S′, with a certain total cost (costS′) and accuracy
(accS′).

3) Reward: To asses an action (A) at a given state (S),
we formulate the following reward:

reward(A, S) = costS − costS′

ex p(accS − accS′)
. (2)

The numerator of this reward function encourages reduction
in the underlying hardware cost. The denominator is an expo-
nential term that penalizes decrease in the inference accuracy.
As such, the reward function models the ultimate goal of
efficient implementation with minimal accuracy degradation.

4) Iterative Rank-Selection: AutoRank performs a step-
by-step rank selection by iteratively choosing the optimal
actions that render the highest rewards. Algorithm 1 presents
a pseudo-code for the proposed rank-selection policy. Initially,
all DNN layers are set to have full-rank weight parameters, i.e.,
no decomposition is applied (line 1). At each step, possible
actions are evaluated where each action selects one layer (l)
and changes its current rank (Rl) to one of the possible
quantized ranks (Rl

next , line 11). For each of these actions, the

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 12,2022 at 20:06:14 UTC from IEEE Xplore. Restrictions apply.

JAVAHERIPI et al.: AUTORANK: AUTOMATED RANK SELECTION FOR EFFECTIVE NEURAL NETWORK CUSTOMIZATION 615

Algorithm 1 Automated Rank Selection
Inputs: pre-trained DNN model (M), number of per-way
decomposition bins (b), minimum accuracy threshold (θ), list
of per-layer profiling information (cost), validation data and
labels (XY = {(x1, y1), . . . }).
Output: list of rank configurations ({S1, S2, . . . }) that
capture the optimal accuracy-runtime trade-off.

1: S← {R1 = (c1, f 1), . . . , RL = (cL , f L)} � Full-ranks
2: accS = Accuracy(M, XY |S) � Run inference.
3: configs← {S}
4: for l ∈ {1, . . . , L} do � List per-layer quantized ranks.
5: ranksl ← {(rc, rf)|rc ∈ { cl

b , . . . , cl}, rf ∈ { f l

b , . . . , f l}}
6: end for
7: while accS > θ do
8: for l ∈ {1, . . . , L} do
9: for Rl

next ∈ ranksl do
10: A : Rl ← Rl

next
11: S′ ← {R1, R2, . . . , Rl = Rl

next, . . . , RL }
12: accS′ = Accuracy(M, XY |S′)
13: reward(A, S) = cost(Rl)−cost(Rl

next)
exp(accS−accS′)

14: end for
15: end for
16: A∗ ← arg maxA reward(A, S) � Get optimal action.
17: Rl∗

next ← Rl
next|A∗ � Decompose with selected rank.

18: S = {R1, R2, . . . , Rl = Rl∗
next, . . . , RL}

19: accS = Accuracy(M|S)
20: for Rl∗

next ∈ ranksl∗ do � Reduce search space.
21: if cost(Rl∗

next) then
22: ranksl∗ ← ranksl∗ − {Rl∗

next}
23: end if
24: end for
25: configs← {configs} + {S} � Store per-layer ranks.
26: end while
27: return configs

corresponding inference accuracy is measured by evaluating
the decomposed DNN on a small subset of validation data.
Next, all rewards are calculated using Eq. 2 and the action
with the highest reward is applied (line 16). As the iterative
algorithm proceeds, both total cost (costS) and inference accu-
racy (accS) decrease, resulting in a trade-off between inference
accuracy and the pre-defined hardware performance measure.

5) Search Space Reduction: At the end of each iteration, all
actions resulting in a higher cost than the optimal action are
eliminated from the search space (line 22). As such, the search
overhead is diminished over iterations. Note that AutoRank
does not perform network re-training (parameter fine-tuning)
in between the algorithm steps. Therefore, the computational
overhead of AutoRank is drastically smaller than that of
RL-based techniques.

6) Overhead Analysis: AutoRank requires one-time para-
meter decomposition for all layers, which is pre-computed
before executing Algorithm 1. During the rank selection
process, for each evaluation of the reward function, the

Fig. 5. Left: inference accuracy and runtime trade-off versus the iteration
steps. Right: effect of re-training on the validation accuracy for different
configurations.

algorithm runtime is dominated by two main components.
First, the weight parameters of the selected layer should be
set to the (pre-computed) decomposed parameters (line 11).
Second, the inference accuracy should be computed for a small
batch of data. Both of the aforementioned operations incur
negligible computational overhead compared to DNN training.

C. Fine-Tuning

As discussed in Section V-B, the output of our
rank-selection policy is a set of per-layer rank configurations,
each of which is associated with a certain physical cost and
inference accuracy. Fig. 5 (left) demonstrates the accuracy
and runtime for different rank configurations obtained by
applying Algorithm 1 to AlexNet architecture. As mentioned
earlier, to minimize the search overhead, no re-training is
performed amidst algorithm iterations. Upon completion of
the rank-selection procedure, AutoRank re-trains the chosen
decomposed DNN configuration to restore the accuracy loss.
Fine-tuning is performed by means of standard back-
propagation routines. In Fig. 5 (right), we show that the
inference accuracy can be restored with minimal degradation
by fine-tuning the selected decomposed DNN for as few as
1 epoch. As we show in our experiments, the accuracy that is
achieved immediately after customization is highly correlated
with the one after fine-tuning.

VI. EXPERIMENTS

To corroborate the effectiveness of our proposed method-
ology, we evaluate two well-known DNN architectures,
namely, Alexnet (5 CONV and 3 FC layers) and VGG-16
(13 CONV and 3 FC layers). Our experiments are performed
on the ISLVRC-12 (ImageNet) visual dataset consisting of
1000 classes. We use Pytorch for DNN description and fine-
tuning. For Tucker decomposition, we utilize the Tensorly
package [22]. The first step for evaluating AutoRank is to
extract hardware-specific information by means of the hard-
ware profiling tool explained in Section V-A. We randomly
sample 1000 images from the ImageNet validation data, which
are then fed to the rank-selection algorithm together with the
extracted hardware profiling reports. The minimum (top-1)
accuracy threshold (θ in Algorithm 1) is set to 25% and the
number of per-mode quantized ranks (b in Algorithm 1) are
set to 8 in our experiments. Once the decomposed DNN is

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 12,2022 at 20:06:14 UTC from IEEE Xplore. Restrictions apply.

616 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 11, NO. 4, DECEMBER 2021

Fig. 6. Trade-off curve between runtime and accuracy obtained by
Algorithm 1 for AlexNet (left) and VGG-16 (right). The reported accuracies
are achieved without fine-tuning. Runtimes are measured for single image
inference on ARM-A57 CPU. Arrows show the selected configurations to be
fine-tuned.

Fig. 7. Fine-tuning curves of selected configurations in Fig. 5.

configured, we deploy the model on an embedded board with
an ARM-A57 processor to measure runtime and power.

A. Runtime and Accuracy Analysis

We run AutoRank algorithm with the cost in Eq. 2 set
to measured runtime. The result of the algorithm is a set of
per-layer rank configurations that capture the trade-off between
runtime and accuracy as shown in Fig. 6. The accuracy of
AutoRank decomposed DNNs can be further improved by
fine-tuning, which takes place after Algorithm 1. To show this
effect, we select several candidate configurations (shown by
arrows) and fine-tune the corresponding DNNs for 15 epochs.
The training curves are presented in Fig. 7. We note that
the final accuracy is correlated with the initial validation
accuracy. Such correlation allows us to run AutoRank without
fine-tuning the model throughout the search iterations, ensur-
ing a fast rank-selection process.

1) Effect of Hardware Profiling: It is often observed in
prior work [6], [23] that the measured speedup on compressed
DNNs is lower than the expected “theoretical” speedup defined
based on the number of floating-point operations (FLOPs)
required for inference. An interesting property of AutoRank
is that it achieves higher measured speedup compared to
what is expected in theory. Fig. 8 shows the two speedups
for the evaluated benchmarks. AutoRank directly incorporates
implicit hardware-related factors (e.g., memory access) that
impact runtime rather than solely relying on the number of
FLOPs. This hardware-aware customization greatly boosts the

Fig. 8. Theoretical and measured speedups. AutoRank customized models
achieve higher actual speedup, compared to theory, in all benchmarks.

Fig. 9. breakdown of runtime for AlexNet CONV layers.

Fig. 10. Normalized energy for AlexNet and VGG-16.

performance on constrained processors such as the evaluated
CPU.

2) Discussion: To qualitatively study AutoRank and pro-
vide insights, we show the per-layer runtime of the AlexNet
selected configurations in Fig. 9. In the original model (the
dark bars), the second layer (CONV-2) renders the highest
runtime. AutoRank automatically detects this characteristic at
the early stages of the iterative rank selection, resulting in
Config 1. Unlike the baseline model which has a high variation
in layer runtimes, AutoRank tends to enforce a uniform
runtime across layers, which can facilitate pipelining the layers
for a higher throughput. After Config 1 is obtained, AutoRank
iteratively advances to Config 2 and 3. Our algorithm auto-
matically detects that CONV 1 and CONV 2 contribute sig-
nificantly to the inference accuracy; therefore, to maintain the
inference accuracy, AutoRank opts not to further compress the
first two layers and decomposes the deeper layers instead.

B. Power and Energy Analysis

To examine the energy efficiency of AutoRank runtime-
optimized configurations, we measure the power consumption

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 12,2022 at 20:06:14 UTC from IEEE Xplore. Restrictions apply.

JAVAHERIPI et al.: AUTORANK: AUTOMATED RANK SELECTION FOR EFFECTIVE NEURAL NETWORK CUSTOMIZATION 617

Fig. 11. Power monitoring for AlexNet (left) and VGG-16 (right). The top row shows power curves for the original uncompressed model. The bottom three
rows correspond to Config-1 through 3, respectively. In this example, the AlexNet model runs a batch of 32 images while the VGG-16 model performs single
image inference.

TABLE I

SUMMARY OF SELECTED RUNTIME-OPTIMIZED MODELS

of Jetson TX2 embedded board during model inference. Mea-
surements are obtained from three rails corresponding to CPU,
SOC, and Memory. Fig. 10 summarizes AutoRank energy
usage (normalized by the uncompressed model’s energy).
To provide a more detailed analysis, we present the instanta-
neous power consumption in Fig. 11. Here, the start and end
times for execution of DNN layers are shown by the vertical
lines on each figure. As seen in the magnified curve, decom-
posed convolutions at the beginning and end of layer execution
have lower power consumption. This is due to the lower cost
of point-wise (1 × 1) convolutions (corresponding to CONV1

and CONV3 in Fig. 3) that take place in decomposed layers.
This effect along with lower overall runtime allows AutoRank
to achieve significant energy saving as shown in Fig. 10.

C. Memory Analysis

Similar to our runtime-oriented rank-selection in Fig. 6,
we generate a set of configurations for memory-optimized
decomposition. In this case, the cost in the denominator of
Eq. 2 is defined as the total number of parameters in the weight
tensors which is directly translated to the pertinent memory
footprint. We then select three candidate configurations that
achieve the same level of accuracy as the run-time opti-
mized configurations selected. Fig. 12 presents the comparison
between the acquired memory/runtime-optimized AutoRank
models in terms of runtime and memory. As can be seen, the
memory-oriented optimization achieves a higher compression
rate than the runtime-based policy; however, the ranks selected

Fig. 12. Comparison between memory-oriented (dark blue) and runtime-
oriented (light blue) rank configurations. The latter achieves better runtime
while the former gains higher memory compression. At each Config X, the
corresponding pairs have equivalent classification accuracy.

for memory compression lead to a high runtime. In this case,
we observe that AutoRank aggressively targets fully-connected
layers and approximates them with lower ranks to save
memory, but does not apply severe decomposition to the
compute-intensive convolution layers. This experiment further
validates the effectiveness of hardware-aware optimization.
It also demonstrates the automatic adaptation of AutoRank
compression policy to the underlying hardware cost by means
of our reward function (Eq. 2).

D. Summary and Comparison With Prior Art

Table I summarizes the corresponding runtime improve-
ment and reduction in FLOPs achieved for the AlexNet and

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 12,2022 at 20:06:14 UTC from IEEE Xplore. Restrictions apply.

618 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 11, NO. 4, DECEMBER 2021

TABLE II

RANK CONFIGURATIONS FOR DECOMPOSED ALEXNET (TOP) AND VGG-16 (BOTTOM) PRODUCED BY AUTORANK. HERE, C DENOTES A CONV LAYER,
(rc, rf) PRESENTS THE DECOMPOSITION RANKS, AND A DASH MEANS THAT THE LAYER IS NOT DECOMPOSED IN THAT DIRECTION

VGG16 networks, respectively. The corresponding decompo-
sition ranks for each of the configurations are enclosed in
Table II. We report our top-5 test accuracy for candidate
configurations (shown in Fig. 6) prior to fine-tuning, after 1
epoch of re-training, and after 15 epochs of re-training. For
AlexNet and VGG-16 networks, AutoRank achieves up to
4.43× and 9.35× reduction in runtime, with a respective top-5
accuracy degradation of less than 1.07% and 1.21%.

To better demonstrate the effect of cost-aware rank selec-
tion, we compare AutoRank with the original Tucker decom-
position methodology [6]; in that work, the ranks are selected
such that the energy of per-layer tensor approximations is
higher than a pre-defined value. While the aforementioned
method can achieve a low reconstruction error for single-layer
tensor approximation, it does not model the inter-layer cor-
relation for whole-network compression, resulting in low
accuracy rates immediately after compression (corresponding
to 0 fine-tuning epoch in Table I). As seen, [6] reduces
the top-5 accuracy of AlexNet and VGG-16 to 23.39% and
34.06%, respectively. AutoRank, on the other hand, allows
us to preserve this accuracy even without fine-tuning: in
Config 1, we can obtain 77.10 top-5 accuracy and 1.62 runtime
improvement for AlexNet. Similarly for VGG-16, we achieve
3.95 runtime improvement with a top-5 accuracy of 79.00 in
Config 1.

We can fine-tune the models to improve the accuracy.
We achieve faster training convergence compared to the prior
work. For example, considering the fine-tuning of VGG-16
in Config 2, AutoRank achieves 85.97% top-5 accuracy after
1 epoch and eventually obtains 89.61% after 15 epochs,
whereas [6] achieves 78.68% and 89.4% after 1 and 15 epochs,
respectively. This is a direct result of starting the fine-tuning
stage from a good initial state with carefully-selected ranks
that do not severely impact the original classification accuracy.

E. Algorithm Overhead

On a personal computer with an Intel-Xeon-5 CPU
and Nvidia-Titan-XP GPU, our search policy takes
(≈ 1 GPU-hour) for AlexNet and (≈ 18 GPU-hours)
for VGG-16. On the same machine, training the original
uncompressed DNNs takes (≈ 27 GPU-hours) for
AlexNet (assuming 80 epochs for convergence [11]),
and (≈ 225 GPU-hours) for VGG-16 architecture (assuming
75 epochs for convergence [24]). Therefore, the overhead

of AutoRank customization algorithm is quite negligible
compared to the training cost: ∼ 3.7% and ∼ 8% for AlexNet
and VGG-16, respectively. Furthermore, we emphasize
that AutoRank extracts multiple configurations, i.e, 33 for
AlexNet and 63 for VGG-16 in our experiments, each of
which represents a specific accuracy and hardware constraint.
Thus, the amortized (per-configuration) computational costs
of AutoRank are much lower than the above-mentioned
values.

VII. CONCLUSION

This paper proposes a fully automated framework for
hardware-aware compression of DNNs via tensor decompo-
sition. We devise an intelligent rank-selection module that
adaptively selects the best configuration of decomposition
ranks across DNN layers such that the decomposed model
optimally executes on a desired hardware platform. Our auto-
mated rank-selection engine accommodates various embedded
hardware constraints, e.g., runtime, memory footprint, and
power. In order to efficiently model the limitations of the
resource-constrained platforms, we leverage a hardware pro-
filing module which generates performance reports to be used
for policy making by the rank-selection engine. AutoRank
automated rank-selection incorporates a state-action-reward
scheme inspired by RL to select several configuration of per-
layer ranks, each of which demonstrate a certain trade-off
between model accuracy and compression rate. AutoRank
achieves higher practical performance on different DNN archi-
tectures compared to prior work. Our evaluations on the
challenging ImageNet dataset together with our measurements
from an embedded processor fully corroborate the effective-
ness of AutoRank methodology.

REFERENCES

[1] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Quantized neural networks: Training neural networks with low preci-
sion weights and activations,” 2016, arXiv:1609.07061.

[2] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and Huffman
coding,” 2015, arXiv:1510.00149.

[3] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Penksy, “Sparse
convolutional neural networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2015, pp. 806–814.

[4] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in Proc. NIPS, 2016, pp. 2074–2082.

[5] A. G. Howard et al., “MobileNets: Efficient convolutional neural net-
works for mobile vision applications,” 2017, arXiv:1704.04861.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 12,2022 at 20:06:14 UTC from IEEE Xplore. Restrictions apply.

JAVAHERIPI et al.: AUTORANK: AUTOMATED RANK SELECTION FOR EFFECTIVE NEURAL NETWORK CUSTOMIZATION 619

[6] Y.-D. Kim, E. Park, S. Yoo, T. Choi, L. Yang, and D. Shin, “Compression
of deep convolutional neural networks for fast and low power mobile
applications,” 2015, arXiv:1511.06530.

[7] S. Han et al., “EIE: Efficient inference engine on compressed deep neural
network,” in Proc. ACM/IEEE 43rd Annu. Int. Symp. Comput. Archit.
(ISCA), Jun. 2016, pp. 243–254.

[8] V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, and
V. Lempitsky, “Speeding-up convolutional neural networks using
fine-tuned CP-decomposition,” 2014, arXiv:1412.6553.

[9] E. Denton, W. Zaremba, J. Bruna, Y. LeCun, and R. Fergus, “Exploiting
linear structure within convolutional networks for efficient evaluation,”
in Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 1269–1277.

[10] C. Tai, T. Xiao, Y. Zhang, X. Wang, and E. Weinan, “Convolutional
neural networks with low-rank regularization,” 2015, arXiv:1511.06067.

[11] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification with
deep convolutional neural networks,” in Proc. Adv. Neural Inf. Process.
Syst., 2012, pp. 1097–1105.

[12] ChaiDNN: HLS Based Deep Neural Network Accelerator Library for
Xilinx Ultrascale + Mpsocs. Accessed: Sep. 2018. [Online]. Available:
https://github.com/Xilinx/CHaiDNN

[13] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. R. Salakhutdinov, “Improving neural networks by preventing co-
adaptation of feature detectors,” 2012, arXiv:1207.0580.

[14] M. Denil et al., “Predicting parameters in deep learning,” in Proc. Adv.
Neural Inf. Process. Syst., 2013, pp. 2148–2156.

[15] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “A survey of model
compression and acceleration for deep neural networks,” 2017,
arXiv:1710.09282.

[16] M. Jaderberg, A. Vedaldi, and A. Zisserman, “Speeding up convolutional
neural networks with low rank expansions,” 2014, arXiv:1405.3866.

[17] Y. He, J. Lin, Z. Liu, H. Wang, L. Li, and S. Han, “AMC: AutoML
for model compression and acceleration on mobile devices,” in Proc.
ECCV, 2018, pp. 784–800.

[18] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating very
deep neural networks,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, vol. 2, no. 6, pp. 1389–1397.

[19] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM Rev., vol. 51, no. 3, pp. 455–500, 2009.

[20] L. R. Tucker, “Some mathematical notes on three-mode factor analysis,”
Psychometrika, vol. 31, no. 3, pp. 279–311, 1966.

[21] C. D. M. Martin, “Tensor decompositions workshop discussion notes
American Institute of Mathematics (AIM) Palo Alto, CA,” 2004,
pp. 19–23.

[22] J. Kossaifi, Y. Panagakis, A. Anandkumar, and M. Pantic, “Tensorly:
Tensor learning in Python,” 2018, arXiv:1610.09555.

[23] S. Lin, R. Ji, Y. Li, Y. Wu, F. Huang, and B. Zhang, “Accelerating
convolutional networks via global & dynamic filter pruning,” in Proc.
IJCAI, 2018, pp. 2425–2432.

[24] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

Mojan Javaheripi (Graduate Student Member,
IEEE) received the B.Sc. degree in electrical
engineering from the Sharif University of Tech-
nology in 2017. She is currently pursuing the
Ph.D. degree with the Department of Electrical
and Computer Engineering, University of Califor-
nia at San Diego. Her research interests include
co-developing machine learning algorithms and their
corresponding specialized hardware with the goal of
maximizing efficiency and performance.

Mohammad Samragh (Student Member, IEEE)
received the B.Sc. degree in electrical engineering
from the Sharif University of Technology and the
Ph.D. degree in electrical and computer engineering
from the University of California at San Diego. His
research interests include deep learning customiza-
tion, safety and robustness of machine learning algo-
rithms, hardware acceleration of learning algorithms,
and privacy-preserving inference.

Farinaz Koushanfar (Fellow, IEEE) received the
B.S. degree in electrical engineering from the Sharif
University of Technology, the M.S. degree in electri-
cal engineering from UCLA, and the M.A. degree in
statistics and the Ph.D. degree in electrical engineer-
ing and computer science from UC Berkeley. She is
currently a Professor and a Henry Booker Faculty
Scholar of electrical and computer engineering with
the University of California at San Diego, where she
is directing the Adaptive Computing and Embedded
Systems (ACES) Laboratory. Before joining the fac-

ulty at UCSD, she was a Professor of electrical and computer engineering at
Rice University. Her research interests include embedded and cyber-physical
systems design, embedded systems security, and design automation of domain-
specific/mobile computing and machine learning applications. She is a fellow
of the Kavli Foundation Frontiers of the National Academy of Engineering.
She has received a number of awards and honors for her research, mentorship,
and teaching, including the Presidential Early Career Award for Scientists and
Engineers (PECASE) from the President Obama, the ACM SIGDA Outstand-
ing New Faculty Award, MIT TR-35, and the Young Faculty/CAREER Awards
from NSF, DARPA, ONR, and ARO.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on April 12,2022 at 20:06:14 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

