
Automated Checkpointing for Enabling Intensive
Applications on Energy Harvesting Devices

Azalia Mirhoseini, Ebrahim M. Songhori, and Farinaz Koushanfar
Electrical and Computer Engineering Department, Rice University, Houston, Texas

{azalia,ebrahim,farinaz}@rice.edu

Abstract—We propose a framework that enables intensive
computation on ultra-low power devices with discontinuous
energy-harvesting supplies. We devise an optimization algorithm
that efficiently partitions the applications into smaller computa-
tional steps during high-level synthesis. Our system finds low-
overhead checkpoints that minimize recomputation cost due to
power losses, then inserts the checkpoints at the design’s register-
transfer level. The checkpointing rate is automatically adapted to
the source’s realtime behavior. We evaluate our mechanisms on a
battery-less RF energy-harvester platform. Extensive experiments
targeting applications in medical implant devices demonstrate our
approach’s ability to successfully execute complex computations
for various supply patterns with low time, energy, and area
overheads.

Keywords—Energy harvesting, Battery-less RFID, Hardware
Checkpointing, High level synthesis

I. INTRODUCTION

Supplying energy for ultra-low power, portable and mobile
systems is a challenge. Battery operated devices are limited
by the battery’s energy capacity and bounded lifecycle. There
are also applications where batteries are inadmissible, espe-
cially when the operational and environmental conditions are
such that battery replacement or recharging is technologi-
cally infeasible or costly. A promising alternative is to use
energy harvesting sources which can be remotely supplied.
Significant recent progress has been made in creation and
development of energy harvesting technologies [10]. However,
energy harvesting typically provides (more than two) orders
of magnitude less energy than the conventional batteries. The
rate and capacity of the harvested energy limits the amount
of computation/communication supported by the untethered
device. One difficulty is because of the harvested energy’s
intermittent behavior. Another source of problems arise due
to the unpredictable and transient nature of the input energy.
Energy harvesting falls short in supporting those long-running
applications that exceed its supply rate, especially if applica-
tions have reliability requirements.

Saving the state of the system is an important potential
enabler for running long applications on intermittent sources.
Checkpointing is a system-level methodology for recording
the runtime system state that can enable resource restora-
tion, intermittent functional operation, fault-tolerance, and low
power. Checkpointing also finds usage in meeting realtime
constraints by dismissing the need for a full re-computation.
In response to a system recovery request, the checkpointing
methodology should retrieve the value of a source variable in
a way consistent with priory done computations with respect
to the originally running task where execution has halted.

Checkpointing can be done at various levels of a sys-
tem. Previous work has mostly focused on checkpointing
the software system’s state, e.g., insertion of compile-time
checkpoints in codes running on microcontrollers or CPUs [3],
[14]. While processors and controllers find usage in several
applications, it is well known that they consume one or more
orders of magnitude energy than the custom hardware solu-
tions such as Application Specific Integrated Circuits (ASICs).
The software-based checkpointing methods are irrelevant or
directly inapplicable to such custom hardware solutions. The
existing checkpointing solutions for the custom hardware are
designed for tolerating certain fault models [1], [18]. One
class of methods, relevant to our work, inserts the checkpoints
during the High-Level Synthesis (HLS) (see, e.g., [2], [12])
but with different goals and problem constraints. For example,
the HLS-based checkpointing solutions were optimized for
the number of shared checkpointing register files. As an-
other example, fault tolerance objectives are often satisfied
by embedding redundancies and recomputations. Our work
targets checkpoint insertion during the HLS as well. However,
our objective is tolerating the energy supply failures which
requires saving the states in the Non-Volatile Memory (NVM)
instead of register files. A recent work introduces hardware
checkpointing for battery-less energy harvesting devices for
specific type of applications where the work flow is input-
independent [11]. Our work however targets a broader set of
applications that are not necessarily input-independent.

Our objective is to find the best points for automatic
insertion of the checkpoints which minimize the overhead of
storage and recomputations and ensures successful completion
of the application. Our checkpointing is done on the Control-
Data Flow Graph (CDFG) which is a transformation of the
HLS specifications. To reach our objectives, we devise an
effcient algorithm for insertion of checkpoints. For the case
of unpredictable energy supplies, we also suggest efficient
techniques to adaptively sense the available energy and then
activate the checkpoints accordingly. Our automated methods
also explore the efficiency of various NVM technologies
for checkpointing purposes. In particular, we evaluate and
compare the checkpointing’s performance on Flash memory,
phase-change memory (PCM) and Spin-transfer-torque mem-
ory (STTM). Proof-of-concept implementation of our method-
ology is demonstrated on FFT-based pick detection algorithms,
matrix multiplication and cryptography techniques that are
long-running and essential for a number of emerging ultra-low
power applications such as medical implant devices.

Our explicit contributions are:

• A checkpointing method that enables long-running

 Automated Checkpointing for Enabling Intensive Applications

 on Energy Harvesting Devices

978-1-4799-1235-3/13/$31.00 ©2013 IEEE 27 Symposium on Low Power Electronics and Design

computations on energy harvesting devices with lim-
ited energy storage capacities;

• A realtime adaptive mechanism to handle source
power variations that results in reducing the check-
pointing overhead;

• A design tool for automatic insertion of checkpoints
during HLS; and,

• Proof-of-concept implementation which demonstrate
the very low energy, timing, and area overheads while
adapting to power trace variation.

II. RELATED WORK

Energy harvesting has been demonstrated to provide a
viable supply for ultra lightweight embedded and untethered
devices — especially for those operating in environments
where battery recharging or replacement is very costly or
technologically infeasible [10], [17]. Energy scavenging plat-
forms based on various energy sources including solar, wireless
power transmission, and vibrations have been developed and
successfully evaluated (see, e.g., WISP [15] and EnHANTs
[8]).

Energy harvesting technology typically supplies smaller
amounts of energy than the battery and thus it is important
to design the system to be as low power as possible. ASIC is
the platform of choice for energy scavenging scenarios since
it provides the most energy efficient computing solution by
carefully customizing the underlying hardware resources to
the task at hand [4]. HLS tools promise to increase design
productivity by enabling design and optimization of ASIC at
the behavioral and application levels [6].

Checkpointing has been shown to be an efficient methodol-
ogy for saving the runtime state of software systems running on
intermittent energy harvesting sources [13], [18]. The software
checkpoints are inserted at the compiler level. While it is easy
to checkpoint all the states and data in the system, the over-
head on performance would likely become unacceptable [7].
Program partitioning methods were also applied for enabling
long computations on variable energy sources [3], [14]. As
an example, Mementos suggests a method for extending the
computations on a low power microcontroller with wireless
energy delivery [14]. The Mementos checkpoints are inserted
(during the program compilation) at the end of functions and
loops; an interrupt timer periodically reads the voltage level
and activates checkpointing if the level goes below a predefined
threshold.

The existing software-based checkpointing solutions are
not directly relevant to ASIC platforms. This is because of
many differences between hardware and software, including
but not limited to: hardware-specific computational and archi-
tectural models such as pipelining and parallelism; absence
of one-to-one mapping between the software variables and
hardware registers; and limitations in control/accessing of
certain hardware resources during compilation.

Of relevance to our work are the fault tolerant ASIC design
techniques that apply checkpointing and rollback recovery dur-
ing the HLS [2], [12]. However, the assumptions, objectives,
and algorithms are drastically different from our paper as the

fault tolerance work focused on storage of temporary variables
while minimizing the amount of shared registers. The proposed
earlier solutions guarantee that sufficient registers are available
for checkpointing. Since we use NVM for checkpointing, the
constraints on the shared register files are not of concern. Fault
tolerance also demands redundancy at the checkpoints (e.g., by
replication or task redoing [9]) which are to be avoided in our
work since we focus on achieving the lowest possible energy
consumption.

In an earlier work, we proposed a framework for check-
pointing in energy harvesting devices [11]. Our work includes
a set of optimization algorithms to locate the checkpoints with
the goal of minimizing the cost of storing and retrieving data.
The framework targets specific applications where the flow of
data within the CDFG is predictable and input-independent.
Based on that assumption and during the design time, the
application is run for an arbitrary input and the resulting Finite
State Machine (FSM) is unrolled to find the checkpoints. Those
methods are not applicable for input-dependent applications
where each input signal result in a different unrolled FSM.
Our current work, however, introduces hardware checkpointing
mechanisms for input-dependent algorithms. Such algorithms
appear in a much wider range of applications such as compu-
tational sensing analysis.

III. CHECKPOINTING FRAMEWORK AND MECHANISMS

Our checkpointing problem’s framework is the following.

Goal. Executing long and intensive computations on battery-
less ASIC devices with intermittent energy harvesting supplies
and ultra-low capacity energy storage units.

Inputs. Design’s HLS description and/or design’s CDFG and
Hardware Description Language (HDL) descriptions. The en-
ergy harvesting platform characteristics.

Tasks. Inserting low-overhead checkpoints. The checkpoints
should be inserted efficiently to ensure task completion and
reduce recomputation energy loss due to power failures.

Figure 1 shows the overall flow of our proposed framework.
Our techniques are applied partly during the design-time and
partly during realtime operation of the system. At the design
time, we compute the time and energy overhead of inserting a
checkpoint at the end of a computational state. Next, based on
our developed optimization algorithm, we find the checkpoint
locations with the lowest overhead. The algorithm limits the
maximum distance between two consecutive checkpoints in
the application flow to reduce recomputation cost. We also
ensure completion of tasks by asserting checkpointing circuits
at feedback loops. After finding optimal checkpoint locations,
the checkpointing circuits which enable saving and retrieving
data are automatically embedded within the design’s HDL
description. We provide a low-overhead implementation of
such circuits. During the realtime operation, the checkpoints
are activated adaptively based on the system’s available en-
ergy. This prevents unnecessary checkpoints and reduces the
overhead.

In the remainder of this section, we first demonstrate
how based on the design’s HLS information, we can locate

High-level

design

C/C++

High-level

synthesis tool

CDFG

Verilog

Finding

checkpoints

Inserting

checkpoints

Checkpoint

supported

Verilog

Fig. 1. Checkpointing framework.

the checkpoints and find their energy overhead. Second, we
propose our methods for finding the best locations for inserting
the checkpointing circuits during the design period. Finally,
we describe our adaptive realtime mechanism for activating
the checkpoints.

A. Locating possible checkpoints and cost estimation

For devising a low-overhead checkpointing method the cost
of potential checkpoints should be estimated. Our approach
for computing the checkpoint’s energy cost utilizes the HLS
design suite outputs including the design’s CDFG and its FSM.

CDFG is a way of presenting data flow through the design.
It can be observed as a graph whose nodes are the design’s
basic-blocks (such as logic operations, loops, and conditions)
and whose edges show the dependencies of the processes.
FSM is a also a visual method to demonstrate the design’s
computational flow. It consists of computational states with
edges to indicate the control flow. Each state includes all
the CDFG’s basic-blocks that are executed concurrently. An
example design’s CDFG and its FSM can be seen on Figure
2. The checkpoints are inserted at the end of states.

S1 S2 S3 S4 S5

S1 S2 S3 S4 S5S2 S3

State-orders

FSM

CDFG

S1 S2 S3 S2 S3

t=1 t=2 t=3 t=4 t=5 t=6 t=7

S4 S5S2 S3

t=8 t=9

Basic block

State

Fig. 2. CDFG, FSM, and State-order (for 2 different inputs) of the design.
It can be seen that the number of times data flows through the loop between
S2 and S3 varies depending on the inputs.

Some of the basic-blocks use registers to store their outputs.
At each checkpoint, all the registers whose values are later
used in computations should be stored for a correct recovery.
Such registers have the following properties. First, the register
belongs to a state that is executed before the checkpoint. Sec-
ond, there is an edge that connects the register’s corresponding
basic-block to a basic-block that belongs to a state which will
be executed after the checkpoint. The energy cost associated
with saving and retrieving the registers are calculated based on
the underlying platform’s NVM characteristics (Section IV).

Design’s CDFG and FSM provide information regarding
the computational states and data flow but do not capture
some of the design’s runtime characteristics that are required
for checkpointing. We use the term state-order to refer to

the realtime execution order of the states. State-order can be
obtained by unrolling the graph associated with FSM. The
state-order varies depending on the inputs of the algorithm,
Figure 2. The length of state-order is equal to the total
application runtime.

B. Checkpoint insertion: design time

The goal of our algorithm is to place the checkpoints such
that the total energy to execute all the states in the state-order
is minimized. Concurrently, the method should ensure comple-
tion of the application for different input signals; for the same
application (such as FFT-based peak detection) different inputs
may result in varying state-orders. The consumed energy is
the sum of the computational and the checkpointing overhead
energies. Since checkpoints incur overhead, it is best to insert
them only before the power supply failures. However, there are
multiple challenges that make this approach inapplicable. One
challenge is that in most energy harvesting applications the
source can be very unpredictable. The other challenge arises
from input dependency of the state-order. Since checkpointing
circuits are implemented during the design time, there is
no such flexibility to dynamically change the location of
checkpoints based on the input data.

We propose a two-fold checkpoint insertion approach to
address the above challenges. The first step is built upon
the following key observations: the structure and number of
different states in design’s FSM is independent of the input.
However, based on the input, the number of times data flows
through the loops varies. Figure 2 shows the execution of an
algorithm for two inputs that result in the same CDFG and
FSM but different state-orders. In this case, data has been
passed through the feedback loop between S2 and S3 for a
different number of times for each input. Another observation
is that for our target applications such as FFT-based peak
detection algorithms, the number of different states in FSM
is limited. Thus, it is reasonable to add a checkpointing circuit
at the end of each feedback loop. We refer to that location
by loop-end. For instance, such loop-end state would be S3

on Figure 2. That way, if for some input, data iteratively
flows through the loop for a large number of times, given the
checkpointing circuit, we can save the computational progress.
Otherwise, if no such circuit exists, we may never be able
to complete the application due to the limited energy storage
capacity and the transient source.

In the second step, we mitigate the source transient behav-
ior by setting a limit on the distance between two consecutive
checkpoints. The limit is calculated based on the average
power consumption of the computational application and the
energy supply capacity.

Let us denote a potential checkpoint at the end of state i
in the FSM with cp(i) for 1 ≤ i ≤ T . We assign a weight
to each potential checkpoint, shown by w(cp(i)), which is
proportional to the corresponding cost of checkpointing. The
objective, denoted by minW(T,N), now becomes selecting
a set of N checkpoints with minimum total weight such
that the distance (in time) between two consecutive selected
checkpoints is less than a limit D. The Objective Function
(OF) can be summarized as follows.

Algorithm-1: Minimizing OF
1 for t : 0 ≤ t ≤ T
2 for n : 0 ≤ n ≤ Nmax

3 W(t, k) = +∞
4 for t : 0 ≤ t ≤ D
5 W(t, 0) = 0
6 for n : 1 ≤ n ≤ Nmax

7 for t : n ≤ t ≤ T
8 W(t, n) = w(CP (t)) + min1≤i≤D

9 W(t− i, n− 1)

OF. Find {s1, s2, ..., sN} ⊂ {1, 2, ..., T}
that minimizes : W(T,N) =

∑
w(cp(si))

for i ∈ {1, 2, ..., N}
Such that si − si−1 ≤ D. (1)

We devise a dynamic programming method to achieve our
objective. The method is provided in Algorithm-1. Since we
have already placed loop-end checkpoints, we run the algo-
rithm to locate the checkpoints between each two consecutive
loop-end states (on design’s FSM). Thus, if two loop-end
checkpoints are closer than D states from each other, no more
checkpoints will be added in between them. First, we set the
initial conditions by enforcing a checkpoint at a distance equal
or less than D from the beginning loop-end state (Line 1-5).
To meet the maximum distance constraint, the total number
of checkpoints should be at least equal to T

D , where T is
the number of states between the two consecutive loop-ends.
For exploring the effect of different number of checkpoints
on our OF, we run the algorithm for up to Nmax number of
checkpoints. Where Nmax is equal to T

Dmax
∗2. The minimum

OF for placing the nth checkpoint at the state t is achieved
by adding the checkpointing cost at state t (Line 8) and the
minimum overall energy cost of inserting the rest of n − 1th

checkpoints before state t (Line 9).

C. Checkpoint activation: runtime

After finding the checkpoint locations, the checkpointing
circuits are embedded on the device during the design time.
We devise an adaptive mechanism that decides whether or not
to activate a checkpoint during the device’s runtime operation.
Activation of a checkpoint means that the data is stored at that
checkpoint. The method is as follows.

When the applications starts running, the available energy
level at the energy storage unit (which is a capacitor in
our platform) is sensed. The available energy divided by
the average energy consumption of the application, gives an
estimation of how far (i.e., how many clock cycles) we can
proceed without the need for checkpointing. Let us assume
the derived number of clock cycles is Nc. Given this number,
we do not activate any checkpoint for the following α ∗ Nc

clock cycles. We do so by setting a backward counter to
α ∗ Nc. Where α is a coefficient between 0 and 1. Based
on our evaluations on the benchmarks, since the actual power
consumption in some periods of time can be considerably
higher than the average power consumption, we set α equal to
0.7 in our experiments. The counter stops at 0.

At each checkpointing circuit location, the checkpoint is
activated only if the counter equals 0. After a checkpoint is
activated, the system is turned off to avoid possible computa-
tion loss. In our energy harvesting model, we assume that the
average harvested power is considerably less than the average
computational power consumption. This assumption is satisfied
in many energy scavenging devices that have constrained
energy storage capacities and limited charging rates. After the
systems turns back on, the available energy is sensed and the
counter is set again.

IV. EVALUATIONS

In the following we discuss our evaluation overview, tools
and softwares that have been used, and the experiment appli-
cations. We demonstrate our evaluation results which include
execution time and energy consumption of the checkpointed
applications. We also evaluate the area overhead of the check-
pointing circuits. Our evaluations measure efficiency of our
algorithms under different source power variations.

A. Evaluation overview

We utilized Xilinx Vivado HLS Design Suit as our HLS
tool. Vivado produces CDFG as a middle-state output and
Verilog as the main output while executing C/C++ source
codes. We develop a C# program to extract information from
Vivado’s CDFG. We then analyze the data to locate the
loops and find the checkpointing costs. Next, based on our
algorithms, we insert the checkpoints into the Verilog files. To
calculate the area overhead and power consumption, we use
Synopsis Design Compiler and FreePDK 45nm([16]) as the
simulation library.

Our energy harvesting platform has a 3.3µF capacitor to
store the harvested energy. The device turns off automatically
when the capacitor voltage decreases to 3.0V .

Since the checkpointed data should be stored on an NVM in
case of power failure, we study the system performance while
using NAND Flash which is the state-of-the-art technology
along with two other emerging NVM technologies: Phase
Change Memory (PCM) and Spin Torque Transfer Memory
(STTM).

Two sets of power traces have been used for the simu-
lations. The first set of traces are generated from a battery-
less RF energy harvesting board. The second set of traces are
synthetic impulses of energy. The amplitudes of the impulses
are driven from a normal distribution and the inter-arrival time
between them follows a Poisson distribution.

B. Benchmarks

We perform our evaluations on a set of detection, com-
putational, and security algorithms that are all applicable to
medical implant devices. The algorithms include FFT-based
peak-detection methods (e.g., in ECG) with varying lengths
and matrix-vector multiplications (used for sensing analysis).
We also evaluate the following cryptographic applications:
AES which is a symmetric cryptography benchmark and
SHA256 and MD5 which are cryptographic hash functions.
AES benchmark encrypts 128KB under 128-bit key and the
hash functions run on 128KB data.

V. EMBEDDING CHECKPOINT CIRCUIT

Vivado HLS produces separate Verilog modules for each
C/C++ function in the source code. There is also a module
instantiation for each function call. To avoid the complexity of
connecting the checkpoint registers to the NVM, we develop
a distributed tree structure for embedding the checkpointing
circuit which we refer to as CPC. CPC’s are inserted into each
Verilog module/file and recursively connected to their parent
CPC in the top-modules. The root of the tree is connected to
the NVM and is the only CPC which has memory controller.
Sending and receiving checkpointed data are based on a depth-
first walk approach on the tree. Figure 3 demonstrates this tree
structure in simple hierarchical Verilog modules. A counter has
been embedded to enable our adaptive mechanism (Section III)
for realtime checkpointing.

CPC

Top Module1

Module2

CPCModule3

N
o

n
-V

o
la

ti
le

 M
e

m
o

ry

Registers

Registers

Registers

CPCModule4

Registers

Counter

Analog-to-

digital

converter

Top CPC

Fig. 3. Checkpointing circuit structure and the order of sending data (lowest
number sends first).

A. Evaluation results

Figure 4 shows the relationship between the number of
checkpoints and time and energy overheads of executing MD5
benchmark. For different D (Section III) values, different num-
ber of checkpoint have been achieved. The underlying NVM
for this experiment is a PCM. The results is the average for ten
synthetic power traces. The power traces average input power
is set to be 0.2% of that of MD5. As it appears on Figure 4,
both time and energy overheads increase when the number of
checkpoints increase. The overhead grows dramatically when
the number of checkpoints becomes very small. In this case,
the increasing distance between two consecutive checkpoints
does not allow the system to reach the next checkpoint.

Figure 5 shows the simulated capacitor voltage behavior
over time for running FFT256. The average source power is
around 8.1% of application power consumption. The adaptive
mechanism also turns off the device after the checkpoint to
avoid recomputation and save energy. The progress towards
application completion is shown at each checkpoint.

We study our algorithm’s performance under different
source power pattern conditions. We execute AES, SHA256,
and FFT64 benchmarks on a set of different power traces

2 4 8 16 32 64 128 256
0

100%

200%

300%

T
im
e
 o
v
e
rh
e
a
d

Number of checkpoints

2 4 8 16 32 64 128 256

100%

200%

300%

E
n
e
rg
y
 o
v
e
rh
e
a
d

MD5 time overhead

MD5 energy overhead

Fig. 4. MD5 energy and time overhead for different number of checkpoints.

0 20 40 60 80
0

1

2

3

4

5

6

Time (s)

C
a

p
a

c
it
o

r
v
o

lt
a

g
e

 (
V

)

FFT256

Checkpoint 1
23.3%

Checkpoint 2
45.7%

Checkpoint 2
67.8%

Checkpoint 2
89.3%

Done

V
off

V
on

Fig. 5. Capacitor voltage over time for running FFT256, checkpoint locations,
and the algorithm progress at each checkpoint.

(S1-S10). S1-S5 have been captured by experiments and S6-
S10 are synthetic traces. The average power of all traces is
3.5µW which is 2 orders of magnitude less than the average
power consumption of the benchmarks. As can be seen on
Figure 6, there is no significant difference between the energy
overhead of the benchmarks over different real and synthetic
power traces. The reason can be described as follows. When
the input source power is much less than the average power
consumption of device, the capacitor’s discharge behavior is
independent of the source power pattern and only relies on
the benchmark power consumption. Thus, our checkpointing
strategy is robust under different unpredictable and discontin-
ues energy harvesting scenarios.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
0

1

2

N
o
rm
a
liz
e
d
 e
n
e
rg
y

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
0

1

2

N
o
rm
a
liz
e
d
 e
n
e
rg
y

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
0

1

2

N
o
rm
a
liz
e
d
 e
n
e
rg
y

AES

SHA256

FFT64

Fig. 6. Effect of different power source patterns on energy overheads of
AES, SHA256, and FFT64. All sources have the same average power.

To study the effect of different NVM technologies, we use
NAND Flash, a state-of-the-art technology, and two emerging
technologies, PCM and SSTM in our simulations. Table I
shows the characteristic of these memories. We measure time
and energy overheads of the benchmarks based on the memory
properties, Figure 7. On the figure, MV300k and MV400k
refer to matrix-vector multiplication designs. The figure shows

the average results of ten synthetic power traces. The average
power of the traces is two order of magnitude less than the
power consumption of the benchmarks. The impact of NVM
characteristics can be better observed in some applications.
However, given the lower cost of Flash and the relative gains,
using a more efficient memory may not be justified.

FTT64 FTT128 MV300k MV400k AES SHA256
0%

10%

20%
Time overhead

FTT64 FTT128 MV300k MV400k AES SHA256
0%

10%

20%
Energy overhead

Flash

PCM

STTM

Flash

PCM

STTM

Fig. 7. Time and energy overheads for using PCM, Flash, and STTM.

TABLE I. NVM CHARACTERISTICS BASED ON [5].

NAND Flash PCM STTM
Read energy (nJ/cell) 1.5 1 0.2
Write energy (nJ/cell) 17.5 6 1.6
Read latency (ns/cell) 6.2 0.8 0.4
Write latency (ns/cell) 125 15 7

Density 1× 1-2.5× 3.75-16×

Figure 8 shows the checkpointing time, energy, and area
overheads for different benchmarks. The test platform’s energy
storage element is a 3.3µF capacitor and NAND Flash is used
as the memory. Overall, the time overhead is less than 19%,
the energy overhead is less than 14%, and the area overhead
is less than 8% for all the benchmarks.

The results suggest that our checkpointing strategy allows
running complex algorithms on intermittent energy harvesting
devices with very limited energy storage units by incurring
reasonably low overheads.

FFT64 FFT128 MV300k MV400k AES SHA256
0%

5%

10%

15%

20%

O
v
e
rh
e
a
d
 (
%
)

Time overhead

Energy overhead

Area overhead

Fig. 8. Time, energy, and area overheads for different applications.

VI. CONCLUSION

We developed a set of mechanisms and tools for enabling
intensive computations on small-scale battery-less energy har-
vesting devices. Our work addresses the challenges associated
with small, low-capacity energy storage units (due to the area
limitations) and also power unpredictability and intermittency
by introducing efficient hardware checkpointing techniques.
Our methods are designed for input-dependent applications
such as peak detection algorithms where the order of state
execution varies by the input. The checkpoints allow the
system to gradually complete the tasks as energy becomes

available. Our framework adaptively tunes the checkpointing
rate based on the realtime source power variations to reduce the
recomputation cost and minimize the checkpointing overhead.
We provided an automatic tool that takes the design’s HLS
description as the input and generates the Verilog description
with embedded checkpoints at the output. Our evaluations
were performed on a diverse set of FFT-based peak detection
algorithms, matrix computations, and cryptographic applica-
tions. The results demonstrated efficiency and adaptability of
our mechanisms for different source pattern scenarios. The
overhead of the checkpoints were measured and shown to be
low, with less than 19%, 14%, and, 8% overhead in energy,
time, and area respectively.

REFERENCES

[1] R. Barbosa and J. Karlsson. On the integrity of lightweight checkpoints.
In HASE, pages 125 –134, 2008.

[2] D. Blough, F. Kurdahi, and S. Ohm. Optimal recovery point insertion for
high-level synthesis of recoverable microarchitectures. In FTC, pages
50 –59, 1992.

[3] M. Buettner, B. Greenstein, D. Wetherall, and J. Smith. Revisiting smart
dust with RFID sensor networks, 2008.

[4] A. Chandrakasan, D. Daly, J. Kwong, and Y. Ramadass. Next generation
micro-power systems. In VLSI Circuits, pages 2 –5, 2008.

[5] S. Chen, P. Gibbons, and S. Nath. Rethinking database algorithms for
phase change memory. In CIDR, pages 1 –11, 2011.

[6] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang.
High-level synthesis for FPGAs: From prototyping to deployment.
TCAD, pages 473 –491, 2011.

[7] A. Dunkels, B. Gronvall, and T. Voigt. Contiki - a lightweight and
flexible operating system for tiny networked sensors. In LCN, pages
455 –462, 2004.

[8] M. Gorlatova, P. Kinget, I. Kymissis, D. Rubenstein, X. Wang, and
G. Zussman. Challenge: ultra-low-power energy-harvesting active
networked tags (EnHANTs). In MobiCom, pages 253 –260, 2009.

[9] V. Izosimov, P. Pop, P. Eles, and Z. Peng. Synthesis of faulttolerant
embedded systems with checkpointing and replication. In DELTA, pages
440 –447, 2006.

[10] A. Kansal and M. Srivastava. An environmental energy harvesting
framework for sensor networks. In ISLPED, pages 481 –486, 2003.

[11] A. Mirhoseini, E. Songhori, and A. Koushanfar. Idetic: A high-
level synthesis approach for enabling long computations on transiently-
powered ASICs. In PerCom, pages 216 –224, 2013.

[12] A. Orailoglu and R. Karri. Coactive scheduling and checkpoint determi-
nation during high level synthesis of self-recovering microarchitectures.
TVLSI, pages 304 –311, 1994.

[13] B. Ransford, S. Clark, M. Salajegheh, and K. Fu. Getting things done
on computational RFIDs with energy-aware checkpointing and voltage-
aware scheduling. In HotPower, pages 5 –5, 2008.

[14] B. Ransford, J. Sorber, and K. Fu. Mementos: system support for long-
running computation on RFID-scale devices. In ASPLOS, ASPLOS ’11,
pages 159 –170, 2011.

[15] A. Sample, D. Yeager, P. Powledge, A. Mamishev, and J. Smith. Design
of an RFID-based battery-free programmable sensing platform. TIM,
pages 2608 –2615, 2008.

[16] J. Stine, I. Castellanos, M. Wood, J. Henson, F. Love, W. Davis,
P. Franzon, M. Bucher, S. Basavarajaiah, J. Oh, and R. Jenkal. Freepdk:
An open-source variation-aware design kit. In MSE, pages 173 –174,
2007.

[17] C. Vigorito, D. Ganesan, and A. Barto. Adaptive control of duty cycling
in energy-harvesting wireless sensor networks. In SECON, pages 21 –
30, 2007.

[18] Y. Zhang and K. Chakrabarty. Energy-aware adaptive checkpointing in
embedded real-time systems. In DATE, pages 918 –923, 2003.

