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Abstract—We develop Idetic, a set of mechanisms to enable
long computations on ultra-low power Application Specific
Integrated Circuits (ASICs) with energy harvesting sources.
We address the power transiency and unpredictability prob-
lem by optimally inserting checkpoints. Idetic targets high-
level synthesis designs and automatically locates and embeds
the checkpoints at the register-transfer level. We define an
objective function that aims to find the checkpoints which incur
minimum overhead and minimize recomputation energy cost.
We develop and exploit a dynamic programming technique to
solve the optimization problem. For real time operation, Idetic
adaptively adjusts the checkpointing rate based on the available
energy level in the system. Idetic is deployed and evaluated on
cryptographic benchmark circuits. The test platform harvests
RF power through an RFID-reader and stores the energy
in a 3.3uF capacitor. For storage of checkpointed data, we
evaluate and compare the effectiveness of various non-volatile
memories including NAND Flash, PCM, and STTM. Extensive
evaluations show that Idetic reliably enables execution of long
computations under different source power patterns with low
overhead. Our benchmark evaluations demonstrate that the
area and energy overheads corresponding to the checkpoints
are less than 5% and 11% respectively.

I. INTRODUCTION

Recently, there has been an unprecedented growth in
applications that demand autonomous energy supplies for
reliable operation. Examples of such applications include
medical implants, military, telemetry, and remote sensing
tasks under harsh, hazardous, or inaccessible environments.
Batteries fail to operate as a permanent source due to their
limited energy capacity and lifecycle, a major drawback in
scenarios where their replacement is either infeasible or very
expensive. New advances in energy harvesting devices make
them an attractive solution for ultra-low power applications.

Despite the fact that energy harvesting devices enjoy
an apparently limitless supply of energy, there are major
challenges that severely constrain their capabilities. One
critical challenge is the harvested power intermittency. Short
and intermittent availability of harvested energy prohibits
long computations that require a contiguous block of time.
The harvested energy may even be insufficient to sustain
a given task. Another challenge is unpredictability of the
input energy, which makes the system unreliable. Devising
methods to address these challenges is vital for broadening
the applications of energy harvesting devices.

Customized hardware designs are shown to be orders
of magnitude more energy efficient than general-purpose
processors. As a result, ASIC is a very attractive solution
for energy harvesting applications. Despite the higher en-
gineering and manufacturing cost, mass production justifies
using ASIC solutions. In addition, recent advances in High-
Level Synthesis (HLS) tools promises lower design cost and
complexity.

In this paper, we propose Idetic', a novel automated high-
level synthesis methodology that enables long computations
on ultra-low power ASICs with energy harvesting sources.
Idetic applies checkpointing strategies that enable gradual
progress in computations by storing the current state of
the process and retrieving it later when energy becomes
available. Our new methods optimally locate low-overhead
checkpoints that significantly reduce recomputation cost in
systems with frequent power losses.

Our goal is to place the checkpoints such that the un-
derlying application is successfully executed with minimum
energy loss. To find the optimal checkpoint locations, we use
the design’s Control Data Flow Graph (CDFG). CDFG is an
intermediate representation of the design that is generated
while translating the high-level behavioral specifications of
the system to the Hardware Description Language (HDL).
We map the optimal checkpoint placement problem to a cost
minimization objective and solve it with an efficient algo-
rithm based on dynamic programming. We devise mecha-
nisms that embed the checkpointing circuits within the HDL
code. We also propose efficient techniques that adaptively
sense the available energy and activate the checkpoints based
on power consumption estimations.

The checkpointed data has to be stored on a Non-Volatile
Memory (NVM) repeatedly. Thus, choosing an efficient
and fast memory is important. We explore the performance
of different state-of-the-art and emerging NVMs including
NAND-flash memory, Phase-change memory, and Spin-
transfer-torque memory.

Different checkpointing methods have been developed for
software processors, which operate at the compiler level [1],
[2], [3]. Software methods cannot be directly applied to

1Our methodologies name refers to eidetic, a condition in which the
memory is able to recall exact details of the past events.



ASICs due to the fundamental implementation differences.
High-level synthesis checkpointing methods have been de-
veloped for hardware designs to address the fault-tolerance
problem [4], [5]. However, the existing methods target dif-
ferent objectives and constraints that make them inapplicable
to our problem. For example, a design parameter in the
available literature for fault-tolerant checkpointing uses a
limited shared register file to store the checkpoints. Such
fault-tolerant methods are not applicable to our problem
since intermittent power losses erase the register contents.
Our method thus addresses a fundamentally different ob-
jective, as we use NVM for data storage during power
outages and recovery. Our main focus is on tolerating power
failures. Additionally, we exploit state-of-the-art HLS tools
that enable developing complex applications.

We deploy our techniques on cryptographic algorithms
that are run on an RFID platform. As RFIDs become more
and more pervasive, there is an ever-increasing demand for
securing their underlying applications. Due to power source
variation and intermittency, running complex cryptographic
algorithms on RFID devices is very challenging. Our tech-
niques enable the execution of the cryptographic applications
with minimal constraints on supply energy availability. Our
contributions are as follows:

o We propose Idetic, novel checkpointing methodologies
that enable running long computations on ASICs with
energy harvesting sources.

o Idetic is designed to maximally handle the power
source variations in a real time system. It finds optimal
checkpoint locations that incur the lowest energy and
recomputation overhead.

« We develop the supporting tools for automatic insertion
of the checkpointing circuits to the design’s HDL file.

o We explore the memory effect on checkpointing ap-
plications by comparing the performance of different
state-of-the-art and emerging NVM technologies.

o« We show the applicability and effectiveness of our
methods by applying them to benchmark circuits for
cryptographic applications. Our experiments verify that
Idetic causes very low energy, delay, and area overhead
and can efficiently support various power trace patterns.

II. RELATED WORK

Computing on batteryless energy harvesting systems has
found applications in many fields such as cryptography,
wireless sensor networks and habitant monitoring systems
[6], [7]. A number of platforms that empower batteryless
computational devices have been developed. The WISP is a
platform that harvests RF energy from RFID-readers to sup-
ply its processing unit (TI-MSP430) [8]. Following WISP,
several other platforms have been proposed that offer better
performance in RF harvesting, storage, and peripherals;
examples of which are EnHANTS [9] and UMass Moo [10].

The high energy efficiency of ultra-low power ASICs
makes them a natural fit for systems with energy harvest-
ing sources [11]. There are emerging applications of such
systems in distributed sensor networks and medical devices.
For example, Chen et al. recently developed an IntraOcular
Pressure (IOP) sensor for eye pressure monitoring [12].
The sensor is placed inside the eye and achieves energy
autonomy by harvesting solar energy through a solar cell
with average power consumption of less than 10nW. It is
believed that technology scaling to sub-20nm and subthresh-
old designs open doors for an upcoming class of ultra-low
power devices powered by harvesting sources [13].

Checkpointing methods have been proposed for address-
ing the intermittent-energy problem at the compiler level. A
number of techniques suggest saving all the available data
at each checkpoint. Those methods are easy to implement
but are shown to be less efficient due to the large overhead
of the checkpoints [14]. Earlier work have also proposed
voltage scaling techniques along with checkpointing to meet
the deadlines imposed by limited power [15], [3]. Those
methods are inapplicable to our problem, since we target
ultra-low power devices that operate at a single voltage.
For single-voltage devices, a number of program-partitioning
techniques for handling power variations have been devel-
oped [16], [1]. For example, Mementos ([1]) proposes an
automated method for computing on transient RF power on
a TI-MSP430 microcontroller. It inserts the checkpoints at
the end of the loops and function-calls during the compile
time. It also uses a timer interrupt that periodically measures
the source voltage and activates the checkpoint if necessary.

Software methods insert the checkpoints at the compiler
level. However, hardware checkpointing requires CDFG or
lower level descriptions. For example, a variable in high-
level code is not necessarily a single register in HDL. Our
method also takes into account parallelism/pipelining tech-
niques in hardware while placing the checkpoints. However,
software methods such as Mementos do not have access to
such low level information during the compile time.

A suite of prior work has developed high-level synthesis
checkpointing and rollback recovery algorithms to address
the fault-tolerance problem in ASICs [4], [17]. The goal
has been to insert the checkpoints to minimize either the
corresponding hardware overhead for a given execution time,
or to minimize the execution time for a limited hardware.
The hardware constraint is imposed by a shared register file
that is used to store temporary variables. The algorithms
ensure that at the time of checkpointing enough empty
registers are available. Such methods are not resilient to
power loss as the register content would be lost. Since Idetic
uses a separate NVM for checkpointing purposes, we do
not have the shared register file constraint. Methods that
combine checkpointing and replication techniques (redoing
tasks) to achieve fault-tolerance have also been proposed
[5]. However, our objective is to avoid replication; our



assumption is that the source power is scarce and the
device’s energy consumption outpaces the harvested energy.

III. PRELIMINARIES

In this section we briefly describe the concept of CDFG
which is exploited in our checkpointing algorithm. We also
discuss Idetic’s target platform.

Control Data Flow Graph (CDFG): A control data flow
graph is a way to visualize the flow of data through the
hardware system. It models the connections and dependen-
cies between processes. The nodes of the graph are basic-
blocks that can represent operations, loops, and conditionals.
The edges of the graph indicate the direction of data flow
from one node to the other. We use the information provided
by CDFG to form an optimization function that locates
the highly efficient checkpoints. The system level design
automation is being introduced as the next production boost
in the semiconductor industry [18]. Several HLS tools have
emerged that enable automatic synthesis of high-level speci-
fication codes such as C/C++ to Register Transfer Language
(RTL) level specifications optimized for ASIC or FPGA
implementations. In this work, we use AutoESL ([19])
for our high-level synthesis and implementation purposes.
AutoESL automatically generates CDFG from high-level
C/C++ codes.

Energy harvesting platform: Idetic targets general bat-
teryless devices with intermittent power source. For exper-
imental evaluations, we adopt the energy harvesting model
from [10]. UMass Moo board is equipped with an antenna
module that harvests RF power from an RFID reader. The
harvested energy is stored in a capacitor which is the only
energy source of the device.

IV. CHECKPOINTING

Idetic applies the checkpointing method in two phases:
design time and real time operation. During the design time,
Idetic locates the checkpointing spots and automatically
embeds the checkpointing circuit. We first find the overhead
cost of checkpointing at the end of each state in terms of
energy and time. Next, we apply our optimization methods
to find the best checkpoints which incur minimum overhead
cost. The distance between two consecutive checkpoints is
limited to ensure task completion. After the checkpoints
are placed, the checkpointing circuit is inserted to enable
storing and retrieving data. We will show that hardware
implementation of such circuits incur very low cost. During
the real time operation the capacitor’s voltage is sensed
to decide whether or not to activate a checkpoint. This
avoids unnecessary checkpoints when the power supply is
sufficient. The global flow of our approach is shown in
Figure 1.

In the following, we begin with a motivational example
that shows importance of checkpoint placement strategy on

High-level
synthesis
tool

N
[EISsoooooomemmoomooooooog
. Adding . |
High-level . [ . Adaptive |,
cict |l CDFG > Verilog [ che'ckpl.)mt ™ mechanism ||
circuit |
7777777777777777777777777777777777 |
Finding
checkpoint
,,,,,,,,,,,,,
Design Runtime
period period
Figure 1. Global flow of our checkpointing design.

performance. Next, we explain how to find the checkpoint-
ing and recomputation energy overhead at different states.
Finally, using the computed costs, we present our static and
adaptive checkpointing strategies. We define our problem in
the following format:

Objective. Enabling running lengthy applications on ASICs
with energy harvesting sources.

Given. High-level synthesis design of the ASIC. The energy
harvesting platform properties. In our experimental platform,
we need the information about the capacitor’s characteristics.

Problem. Finding optimal locations to insert the checkpoints
that incur minimum energy overhead and maximally reduce
recomputation energy cost in case of power failures.

A. Motivational Example

At each checkpoint location, all the information that is
needed for restarting the computations from that position
should be stored. Depending on the progress in the compu-
tations, the amount of data to be stored varies. Larger data
makes checkpointing more costly, since more data should be
written on and read from the memory. In the following exam-
ple we demonstrate the importance of properly inserting the
checkpoints. Figure 2 shows a CDFG with five states. The
cost for processing each state has been marked on the figure.
For example, the cost for completing the first state (S;) is
2 energy units. We compare two checkpointing strategies;
Strategy A inserts the checkpoints at points A; and Ay and
Strategy B inserts the checkpoints at points By and Bs. The
figure shows the checkpointing cost at each point, e.g., the
cost of checkpointing at A; is 1 energy unit.

Now we calculate the energy loss caused by failures at
different states. If the failure occurs at the end of state 1
(S1), the loss for both strategies is 2 units since we spend 2
energy units on S; (which is the cost of S;). If the failure
occurs at state 2 (Sz), the energy loss for the first and second
strategies are 5 and 6 units respectively. In Strategy A, since
A; is checkpointed, we only lose the cost of Sy which is 4
units. We also spend 1 unit for checkpointing at A;. Thus
in total we lose 4+1=5 units. In Strategy B, for a failure at
So, we lose all resources that are spent at S; and So, that is
2+4=6 units. Using the same loss calculation method, Table
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Figure 2. Different checkpointing strategies affect the performance.
Computational cost of the states (S1, S2, ..., S5) are shown. Checkpoints are
marked as A1 and Ag (Strategy A), B1 and B2 (Strategy B) with numbers
next to them indicating their cost. Strategy B outperforms Strategy A.

Table I
ENERGY LOSS IS CALCULATED FOR FAILURES AT DIFFERENT STATES.

Failure at state: 1|2 3 4 5 Sum
Strategy A’s resource loss | 2 | 5 | 12 | 22 | 30 71
Strategy B’s resource loss | 2 | 6 | 9 | 21 | 14 52

I shows the resource loss for failures at different states for
the two strategies. Assuming that the failures happen with
equal probability, Strategy B outperforms Strategy A since
the sum of the losses incurred by Strategy A is 71 units
while it is 52 units for Strategy B. The reason behind this is
that the total cost of checkpointing at B; and B, is less than
that of A; and A,. In addition, checkpoints B; and By are
inserted at the end of the states that consume more energy.

B. Computing cost function

Idetic measures the checkpoints energy cost as well as the
computational energy at different states for finding the ideal
checkpoint locations. We exploit CDFG output files from
HLS tools. The outputs also provide information about the
Finite-State Machine (FSM) of the design. Figure 3 shows
an example CDFG and its corresponding FSM.
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Gi(B.L) O State
— Link and edge
FSM == Link in cp-path
G(S.E) “\ Checkpoint location
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Figure 3. CDFG, FSM, and State-order of the design. An example
checkpoint is inserted between s3 and s4.

We define a set of notations as follows. We denote a
graph corresponding to the CDFG by G;(B, L), where
B = {by,...,by} is the set of basic-blocks (e.g., adder,
multiplier, condition) and L is the set of links (edges)
indicating the flow of data through the basic-blocks (nodes)
in the CDFG. FSM graph is denoted by G2(S, E) where
S = {s1,...,su} is the set of states (nodes) and FE is set of
edges showing the transitions between the states in FSM. S
is a partition of the set B; each node in B belongs to exactly
one of the states in S. Some basic-blocks have registers

Pseudocode-1: Calculate Cost of Checkpointing.

I foregs, € E

2 b=g¢

3 fors,:1<v<j5—1

4 for sy :j<u<M

5 for b,,, b,, which b,, € s, and b,,, € s,
6 if P(by,,by,) = true

7 d=dUb,

8 if P(by,,b,) = true

9 d=>dUb,

10 ifj<i

11 for s, : 7 <v <4

12 for by, by, which b,, € s, and b, € s;
13 if P(by,by,) = true

14 d=9oUb,

15  Cost(es;s;) =0

16 forbe ®

17 Cost(es,s;) = Cost(es,s,) + width(b)

that can save outputs for future clock cycles. To keep track
of registers needed for checkpointing, we define a Boolean
function P(b,,,b,,) for b,,b,, € B. The function’s output
is true when the following conditions hold: first, b, has a
register; second, there is a path between b, and b,, such
that non of the basic-blocks in the path (except b,, and b,,)
has registers. If such a path exists, the value of the register
b, should be stored for recovery. We refer to the path as a
cp-path. A sample cp-path is shown in Figure 3.

The overhead cost of checkpointing at a state is deter-
mined by the amount of registers needed to be stored for
recovery which is calculated in Pseudocode-1. We denote by
Cost(es,s;) the number of bits needed for checkpointing at
state s; given that the previous state was s;. First, we list all
basic-blocks that should be stored for checkpointing in a set
®. For an edge e, 5, in £, we initially set ® as empty (Line
1-2). Next, we add to ® all the basic-blocks of the cp-paths
which start before s; and end after s; or vice versa (Line
3-9). If es,s; is a loop edge (such as e, in Figure 3), we
also add all the basic-blocks in the cp-paths starting at a state
between s; and s; and ending at s; (Line 10-14). Finally,
to calculate the cost of checkpointing, we add the width of
all registers in ® (Line 15-17). The overhead Cost(es,s,)
is converted to energy cost based on the properties of the
underlying NVM (Table III). For finding the computational
energy cost at each state, we performed power simulations
using Synopsys Design Compiler.

C. Checkpointing Methods

For finding the optimal checkpoint locations, Idetic needs
to know the order of execution of states which we refer to
as state-order. State-order is derived by unrolling the FSM
and turning it into an acyclic sequence of states. As can be
observed in Figure 3, the state-order keeps the state number



Pseudocode-2: Dynamic programming for mini-
mizing Cop
fort:0<t<T
for k:0 <t < Knaz
Cop(t7 k’) = 400
fort:0<t< Dnax
Cor(t,0) = —Cco(t)
fork:1 <k <K o
fort:k<t<T
Cor(t,k) = Cep(t) + mini<;<p,,..
{Cor(t—i,k—1) — Cco(t) + Cco(t —4)}

O 00 N[ B Wi -

at each clock cycle. We denote the length of the state-order
by T' (which is 5 in the example). We performed RTL-level
simulations in ModelSim to find the state-order.

Dynamic programming: Our algorithm exploits Dy-
namic Programming to place the checkpoints such that they
satisfy the following two conditions: (i) the checkpoints
incur minimum energy overhead (ii) the maximum distance
between two consecutive checkpoints is limited. Table II
defines the parameters that are used in our algorithms. The
objective is to insert the checkpoints such that the overall
energy to finish all the 7" states in the state-order, is mini-
mized. By the overall energy, we refer to the computation
and the checkpoint overhead energy. The Objective Function
(OF) is denoted by Cop(t, k) which is the overall energy
for completing k checkpoints at the end of the t** state of
the state-order. The cost Ccp(t) corresponds to Cost(es, s, ),
where s; is the (£ — 1)"" state and s; is the ' state of the
state-order. The cost Coo(t) is the sum of the computation
energy consumptions of all the states from the beginning to
the #*" state in the state-order.

Table IT
DEFINING PARAMETERS.

T Length of the state-order

Cep(t) Energy consumption for checkpointing at the t*" state
in the state-order

Ceolt) Energy consumption for running the application until
tth state in the state-order

Dmagz Maximum number of states between two consecutive
checkpoints in the state-order

We exploit dynamic programming to find the checkpoint
locations. The algorithm is shown in Pseudocode-2. The
initial conditions are set to ensure that the first checkpoint is
located at a maximum distance of D,,,, from the beginning
(Line 1-5). By K,,q., We denote an upper bound on the
number of checkpoints which satisfies the following condi-
tion: K0z > Diw. The minimum OF cost for inserting
the k*" checkpoint at ¢, includes the cost of checkpointing
at that point (Line 8) plus the minimum overall energy that
is consumed before the ¢ state (Line 9).

Periodic checkpointing: To have a comparison basis

for our dynamic programming-based algorithm, we also
applied a periodic approach for inserting the checkpoints.
In the periodic method, the checkpoints are inserted at
equal distances from each other. The periodic checkpointing
does not take into account the cost of checkpointing and
computational energy loss while locating the checkpoints.

Adaptive checkpointing: In hardware checkpointing ap-
plications, as opposed to software, the checkpointing circuits
are located during the design time. However, a preemptive
checkpointing strategy might not be efficient in scenarios
that input energy is sufficient. To cope with the source
energy variations, we propose an adaptive online mecha-
nism that senses the available stored energy before each
checkpoint by an Analog to Digital convertor which reads
the capacitor’s voltage. A checkpoint is skipped if the
capacitor’s energy level (corresponding to Vi) is greater
than the maximum energy consumption between two con-
secutive checkpoints; in our target applications, this value
(corresponding to V;j) is measured offline by power simula-
tion. Otherwise, we complete the predetermined checkpoints
and turn off the device to reduce the recomputation cost,
Figure 4. We assume that the average input power is much
less than the average application power consumption. This
assumption is realistic for several energy scavenging sources
with limited energy capacities and charging rates.
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Figure 4. Adaptive sensing mechanism.

V. EVALUATIONS

In this section, first we describe the evaluation platform,
including the energy harvesting model and power traces.
Next, we explain in details how the checkpointing circuits
are added to the register-transfer level. We also discuss our
evaluation benchmarks. Finally, we provide our evaluation
results that report various time, energy, and area measure-
ments to verify Idetic’s applicability and effectiveness.

A. Evaluation platform

We use Xilinx HLS tool, AutoESL, to obtain CDFG and
Verilog code from high-level C/C++ source. As discussed
in Section IV-C, we also need to find the state-order to
have runtime information of the design. The state-order is
produced by simulating the Verilog codes in ModelSim.



Table III
NVM PROPERTIES BASED ON [21], [22].

NAND Flash PCM STTM
Read energy (nJ/cell) 1.5 1 0.2
Write energy (nJ/cell) 17.5 6 1.6
Read latency (ns/cell) 6.2 0.8 0.4
Write latency (ns/cell) 125 15 7
Density 1x 1-2.5x | 3.75-16x

We have used Synopsis Design Compiler with FreePDK
45nm library ([20]) to evaluate power consumption and
area overhead. We followed the setup shown in Figure 5
for locating and embedding the checkpoints at the RTL.
AutoESL compiles only a subset of standard C/C++ for
hardware implementation. Thus, we modify the benchmark
source code structure accordingly.

State-order
. Verilog w/
® Verilog @ checkpoint

CDFG
xml

Source Modified
code |—»  code
CIC+ CIC+

Figure 5. Experiments flow.

In our energy harvesting platform, V,, is the capacitor’s
voltage at which the device turns on after a power failure
and V,s; is the minimum operating voltage. We denote
by Ilicakage, the leakage current of the device which is
determined by the power simulation. The nominal values in
our model are: V,,=5.4V, V=3V, and the storage capacity
is 3.3uF (except for RSA benchmark which is 10uF). Thus,
the amount of available energy in the period from V,, to
Voss equals 33.26u (100.84J for RSA benchmark).

To enable retrieving information after a power failure,
the checkpointed data should be saved on an NVM. The
energy and time for writing data on the memory affects
the performance of our methods. A variety of NVMs with
different characteristics have been developed. While NAND-
Flash is the state-of-the-art high performance NVM, Phase-
Change Memory (PCM) and Spin-Torque-Transfer Memory
(STTM) are two emerging NVM technologies that exhibit
better energy and speed performances. The properties of
these memories are shown in Table III.

B. Power traces

We have generated a set of real power traces using UMass
Moo board by varying its location with respect to the RFID
reader. We have also generated synthetic power traces with
different mean power and patterns. The power traces include
impulses with amplitudes taken from a Gaussian distribution
and inter-arrival time taken from a Poisson distribution. We
will show that when the average source power is much less

than the power consumption, the source pattern does not
considerably affect the checkpointing results.

C. Checkpointing circuit
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Figure 6. CheckPointing Circuit (CPC) tree structure; 35-bit bus connects
the nodes of the CPC tree. Root CPC is connected to NVM.

For an input high-level source code, AutoESL generates
separate modules for each C/C++ function in Verilog. There
is also a module instantiation for each C/C++ function-
call in Verilog description. This creates a hierarchical struc-
ture of modules. Since the CheckPointing Circuit (CPC)
must have access to sub-modules’ registers, the number of
modules’ I/Os tremendously increases. To avoid the design
complexity, we implement a distributed CPC architecture.
In this architecture, the CPC in each module is recursively
connected to its child CPCs in sub-modules. This structures
can be regarded as a tree whose root is in the top-module.
The root is the only CPC that has a memory controller circuit
and connects to the NVM, Figure 6.

At the time of checkpointing, the root CPC receives a
permission to start checkpointing. Before starting its own
checkpointing, the root gives permission to its child CPCs
according to a Depth First order. It means that the CPCs
which receive the permission, recursively pass it to their
child nodes before sending their own data. The data passes
through CPCs towards the root CPC and the memory bus. A
counter at the root CPC keeps track of the number of words
to be stored at each checkpoint. The counter also serves as
the address of the stored words. After storing all the required
registers, the counter value will be stored on the memory,
Figure 6. Checkpointing procedure is completed when the
root CPC sends its own data on the memory bus. A reverse
procedure is used for recovering data from the NVM.

D. Benchmarks

Idetic is evaluated on cryptographic benchmark circuits
including: RSA ([23]), a public-key cryptography; AES
([24]), a symmetric-key cryptography; and cryptographic
hash functions MD5 ([25]), SHA1, SHA256, and all the
five SHA3 round-3 candidates (BLAKE, Grgstl, JH, Keccak,



and Skein)[24]. Our RSA benchmark encrypts 1024-bit data
under a 1024-bit public key and a constant exponent (65537).
AES benchmark encrypts 128KB data under a 128-bit key.
Hash benchmarks map 128KB input to their message digest.
In cryptographic algorithms, the unrolled state-orders are
independent of the inputs in order to prevent side channel
attacks. Thus, we plug in random inputs to extract the state-
order of our cryptographic benchmarks.

E. Evaluation results

The total energy consumption for completing an appli-
cation is the sum of the computation and the overhead
energy. The overhead energy is the sum of recomputation
energy and the energy of read/write operations on NVM
for checkpointing. We define normalized energy, a metric
that measures the ratio of the total consumed energy to
the computation energy consumption. Likewise, we define
normalized time to measure the time overhead.

We study the relationship between number of checkpoints
and the normalized energy and time in Figure 8. The
experiment is done on MDS5 benchmark, using dynamic-
programming method. The NVM type is PCM. Varying
Do in the dynamic method results in different number
of checkpoints. The simulations are run for ten different
synthetic power traces whose average power are 0.2% of
the MD5 computation power. The average results are re-
ported. As the number of checkpoints increases, due to
overhead of checkpointing, the normalized energy and time
values increase. For very small number of checkpoints, the
normalized energy and time values grow dramatically. The
reason is that a lower number of checkpoints increases
the recomputation overhead due to insufficient checkpoints.
The optimal number of checkpoints for MDS5 is 4 for our
platform. Figure 7 shows the capacitor voltage over time
for completing MDS5. The 4 checkpoint locations and the
corresponding computational progresses can be observed.
If checkpoints are not inserted, only about 22.8% of the
computation will be completed before the power failure
(when the voltage drops down to V,;¢) and this scenario
will be repeated again next time the capacitor is charged.
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Figure 7. Checkpoint locations and corresponding progresses for MDS5.

We explore the effect of different power source patterns
on Idetic’s performance. We run AES, MD5, and SHA256
benchmarks with four synthetic (S1-S4) and four real power
traces (S5-S8). Figure 9 reports the corresponding normal-
ized energy values. The average power of all the traces are

—=—MD5 normalized time
~e-- MD5 normalized energy

Normalized time
N
o
T
Normalized energy

2 4 8 16 32 64 128 25%
Number of checkpoints

Figure 8. MDS5 performance for different number of checkpoints.

3.5uW which is at least 2 orders of magnitude less than
average power consumption of AES, MDS5, and SHA256.
As can be seen on the figure, normalized energy values
of all three benchmarks do not considerably change over
the synthetic and real power traces. The slight variation in
the performance results arises from different amounts of
energy received during the capacitor’s discharge period. In
scenarios, where the rate of energy consumption dominates
the rate of energy harvesting, such as our target applications,
the traces pattern do not significantly affect the capacitor
discharge period. Thus, one can apply our algorithms to
find the location of the checkpoints solely based on device
specifications and the application.
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Figure 9. AES, MD5, and SHA256 normalized energy for different power
traces with equal average power and various patterns.

To verify the effectiveness of our dynamic programming
algorithm, we compare it with the periodic checkpointing
approach. Figure 10 illustrates the normalized energy values
for the two methods versus the number of checkpoints. The
target benchmark is SHA256. The average result for ten
synthetic source power traces are reported. For each trace the
mean power values is 0.2% of SHA256’s power consump-
tion. When the number of checkpoints is around the optimal
number (3), the dynamic method significantly outperforms
the periodic method and introduces much lower overhead.
For larger number of checkpoints, the overhead of both
methods converge due to the high density of checkpoints.

We study our adaptive mechanism’s performance under
different source power conditions. We generate synthetic
power traces with different mean power values that range
between 0.2% and 300% of SHA256 average power con-
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Figure 10. Performance of dynamic and periodic methods on SHA256.

sumption (which is 1.85mW in our experiments). In Figure
11, we show the normalized energy results for applying the
dynamic-only and dynamic-adaptive methods on SHA256.
Both methods are simulated for the optimal number of
checkpoint (3). The adaptive mechanism outperforms the
non-adaptive method for all tested power traces.

Idetic finds optimal number of checkpoints for scenarios
where the average harvested power is much less than the
power consumption. Thus, the discharge duration of the
capacitor only depends on the application’s energy consump-
tion. However, as the energy harvesting rate accelerates, the
capacitor’s discharge duration increases. As a result, even
after completing a checkpoint, the capacitor has enough
energy to continue running the application. If the capacitor’s
energy does not last until the next checkpoints, the cost of
recomputation increases. This effect explains the deep gap
between the two methods performances in Figure 11. In Fig-
ure 12, we show the voltage behavior of the capacitor over
time, when the average source power is around 25.4% of the
application power consumption. The figure shows that the
adaptive mechanism completes the application almost 1.3X
faster than the non-adaptive one. For a larger input power
the capacitor’s energy will last until the next checkpoint,
resulting in reducing the gap between the two methods.
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Figure 11. Comparison of dynamic-only and dynamic-adaptive mecha-
nisms on SHA256 for different mean source powers.

To evaluate NVM effect, we measure the corresponding
normalized energy and time metrics versus the number of
checkpoints in Figure 13. The target benchmark is SHA256
and dynamic-adaptive algorithm is applied. The average
result for ten synthetic source power traces are reported.
For each trace the mean power values is 0.2% of the power
consumption of SHA256. When the number of checkpoints
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o

=== Dynamic-only
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Figure 12. Simulated capacitor voltage for dynamic-only and dynamic-
adaptive methods as SHA256 is running.

is low, the memory performance has an insignificant effect
on the overall efficiency. This is because the overhead of
the checkpoints is small. However, for larger number of
checkpoints the memory characteristics affects the overhead
considerably. Thus, memory selection matters only when the
overhead introduced by the checkpoints is notable.

IS

Normalized time
~

N
~

16 32 64
Number of checkpoints

IS

-
-
==

Normalized energy
n
\
\

o
~

16 32 64
Number of checkpoints

Figure 13. SHA256 performance for PCM, Flash, and STTM.

Table IV shows optimal number of checkpoints and cor-
responding time, energy, and area overheads for different
benchmarks. The memory type is PCM. The capacitor is
3.3uF (10uF for RSA). The checkpoints incur an energy
overhead of less than 11%, time overhead of less than
16%, and area overhead of less than 5%. The results verify
effectiveness and applicability of Idetic. For example, the
optimal number of checkpoints is 83 for RSA benchmark,
which means the capacitor should be charged/discharged
approximately 84 times to complete RSA. The capacity
required for running RSA continuously is 84 times more
than our model’s capacity (10uF). Thus, our methods enable
running a much longer computation on a small capacitor.

VI. CONCLUSION

In this paper we addressed the problem of power in-
termittency in ASICs with energy harvesting sources. We
devised Idetic, a checkpoint placement tool that enables
executing long applications by making gradual progresses
as the power becomes available. Our tool adaptively adjusts
the checkpoints to the power source variations and locates
the ones with minimum overhead. Idetic automatically takes
the high-level synthesis design as the input and outputs the



Table IV
OVERHEADS OF THE DYNAMIC METHOD ON THE BENCHMARKS

Benchmarks | optimal # | Time over- | Energy Area over-
of check- | head(%) over- head(%)
points head(%)

RSA* 83 1.1 1.1 1.2

AES 3 0.4 1.4 4.5

MD5 4 5.0 5.7 3.2

SHA1 1 0.4 0.2 2.5

SHA256 3 1.8 1.8 2.1

BLAKE 1 0.2 0.6 1.5

Grgstl 3 8.2 9.1 3.0

JH 13 11.0 10.3 1.2

Keccak 7 15.7 10.9 1.2

Skein 1 0.5 0.6 5.0

Verilog description of the design with embedded check-
points. Our experiments targeted cryptographic benchmarks.

We

evaluated Idetic’s performance for different power source

conditions. The results verified Idetic’s effectiveness in re-
computation cost reduction caused by the power outages.
The overhead associated with the checkpoints was shown
to be very low: less than 16% energy overhead, less than
11% time overhead, and less than 5% area overhead were
reported for our benchmarks.
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