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Abstract—In the Internet of Things (IoT), the large volume
of data generated by sensors poses significant computational
challenges in resource-constrained environments. Most existing
machine learning algorithms are unable to train a proper model
using a significantly small amount of labeled data available
in practice. In this paper, we propose SemiHD, a novel semi-
supervised algorithm based on brain-inspired HyperDimensional
(HD) computing. SemiHD performs the cognitive task by emu-
lating neuron’s activity in high-dimensional space. SemiHD maps
data points into high-dimensional space and trains a model based
on the available labeled data. To improve the quality of the
model, SemiHD iteratively expands the training data by labeling
data points which can be classified by the current model with
high confidence. We also proposed a framework which enables
users to trade accuracy for efficiency and select the desired
reliability of the model in detecting out of scope data. We have
evaluated SemiHD’s accuracy and efficiency on a wide range of
classification applications and two types of embedded devices:
Raspberry Pi 3 and Kintex-7 FPGA. Our evaluation shows that
SemiHD can improve the classification accuracy of supervised
HD by 10.2% on average (up to 27.3%). In addition, we observe
that SemiHD FPGA implementation achieves 7.11× faster and
12.6× energy efficiency as compared to the CPU implementation.

Index Terms—Brain-inspired computing, Semi-supervised
learning, Machine learning, Energy Efficiency

I. INTRODUCTION

Data is growing faster than ever before and by the year
2020, about 1.7 megabytes of new information will be cre-
ated every second for every human being on the planet [1].
With the emergence of the Internet of Things (IoT), many
applications run machine learning (ML) algorithms to perform
cognitive tasks. In the current state-of-the-art systems, the
embedded devices transmit all the raw data to the cloud for
processing. However, the total number of devices continually
sensing and sending information skyrockets, causing severe
network congestion, waste of energy and violation of real-
time response constraints [2]–[4]. Furthermore, transmitting
raw data off devices neglects privacy which is a key concern in
IoT applications that often operate in homes or other sensitive
areas [5].

Due to the above-mentioned limitations, it is highly desired
to devise machine learning algorithms that can run locally
on resource-constrained embedded devices. However, handling
the large volume of data generated by sensors poses (at least)
two sets of challenges: (i) The existing learning algorithms,
e.g., deep neural network, leveraged in smart applications usu-
ally require significant computational resources and memory

to conform to application-specific requirements. As such, the
pertinent hardware constraints hinder the usability of machine
learning in a wide variety of real-life applications where device
resources and energy are limited [6], [7]. Clearly, there is a
pressing need for alternative learning paradigms which can run
directly on constrained devices without significantly sacrificing
the predictive capacity of state-of-the-art machine learning
techniques. (ii) While data is generated at an unprecedented
rate, the majority of the sensor data is unlabeled. As a result,
conventional supervised learning algorithms which require a
large volume of labeled data to train, fail to obtain desired
prediction accuracy in such scenarios. Therefore, development
and realization of customized semi-supervised learning algo-
rithms on embedded hardware is necessary to fully exploit the
unlabeled data.

HD computing emerged from theoretical neuroscience as
a computationally tractable, but mathematically rigorous way
to model human cognition [8]. At the high level, HD com-
puting represents objects as points known as hypervectors,
in a very high dimensional space known as a hyperspace.
HD exploits mathematical properties of random numbers and
high dimensional spaces to develop a model of computation
which operates on these hypervectors. We argue that HD
computing is well suited to address learning tasks for IoT
networks for three key reasons [9]. First, HD models are
computationally efficient to train and amenable to hardware
level optimization [10], [11]. Second, HD is a fast learning
algorithm which can perform the classification with much less
labeled data [12], [13]. Third, HD models offer an intuitive
and more human-interpretable alternative to deep learning
based techniques. Finally, the mathematics of HD computing
provide strong robustness to noise. This is a critical feature
in sensor networks where wireless communication is often
unreliable and data loss or corruption is possible. However, HD
computing cannot provide high classification accuracy when
the size of the labeled data is small.

In this paper, we propose SemiHD, a novel semi-supervised
HD computing algorithm which enables self-training in high-
dimensional space using very small amounts of labeled data.
SemiHD performs the classification task by mapping data
points into high-dimensional space and generating a model
based on the available labeled data. Here, we listed the main
contribution of the paper:

• To the best of our knowledge, SemiHD is the first semi-



supervised learning algorithm based on the brain-inspired
HD computing algorithm. SemiHD starts the training with
the labeled data and iteratively expands the training data
by labeling data points which can be classified with high
confidence. This gradually improves the quality of the
model by enabling learning task on a large fraction of
the training data.

• We design a novel framework which enables users to
trade accuracy and efficiency before running the applica-
tion just based on the application parameters. Our frame-
work also enables users to choose the desired reliability
of the model at runtime, in order to identify data points
which are out of the classification scope.

• We devise an efficient FPGA implementation to acceler-
ate SemiHD computation. Our implementation supports
our binary and non-binary models using a fully pipelined
architecture.

• We examine the accuracy/efficiency of SemiHD on a wide
range of classification applications. Our evaluation shows
that SemiHD can improve the classification accuracy of
supervised HD by 10.2% on average (up to 27.3%). In
addition, we observe that SemiHD FPGA implementation
achieves 7.11× faster and 12.6× energy efficiency as
compared to the best CPU implementation.

II. BACKGROUND AND MOTIVATION

A. Semi-supervised

In many real-life applications, the portion of labeled data
is quite smaller compared to the high volume of unlabeled
samples. This is partially due to the high labor associated
with hand-labeling. Furthermore, with the unprecedented rate
of data generation in smart IoT devices and the pertinent
real-time requirement, it is often not possible to label the
data on-the-go. In supervised learning, only labeled data are
useful whereas unsupervised learning merely relies on learning
from unlabeled data. Rather than relying solely on one data
type, semi-supervised learning simultaneously benefits from
advantages of the two approaches by leveraging both labeled
and unlabeled data to enhance learning.

Several approaches for semi-supervised learning have been
proposed in literature, namely, self-training [14], generative
models [15], S3VMs [16], graph-based algorithms [17], and
multi-view methods [18]. The above-mentioned algorithms
have their advantages and drawbacks. For example, generative
models can provide an effective probabilistic framework that
can enjoy a high accuracy if the underlying model is close to
the true distribution of the data. However, the computational
complexity associated with this group of semi-supervised
algorithms often hinders efficient deployment on embedded
devices. In this paper, we utilize self-training as an effective
and light-weight semi-supervised learning approach to ensure
compatibility with extreme resource constraints. It is known
that self-training can lead to weak classifiers since mistakes
in the earlier stages of the training algorithm can reinforce
themselves. To overcome this challenge, we incorporate a
confidence check into our framework to prevent mislabeled
samples from interfering in the training process.

B. Hyperdimensional Computing

Hyperdimensional computing is motivated by the obser-
vation that the human brain operates on high dimensional
representations of data [8]. This high-dimensional space is
referred to as a hyperspace, while points in the space are
known as hypervectors (e.g., D = 10,000). The elements
of a hypervector are typically either bits (i.e. 0,1) or real
numbers. Because of their high-dimensionality, any randomly
chosen pair of hypervectors will be nearly orthogonal [19].
In most applications, data input is in the form of low-
dimensional signals. The process of transforming sensor input
into a high-dimensional representation suitable for HD is
known as encoding. In some cases, encoding can be done
simply by randomly generating a hypervector. For example,
to encode a text document, work in [20]–[22] generates a
random hypervector for each letter of the alphabet and then
represents words as sequences of letters. Such an encoding
scheme is suitable when the relationship between input data
is nominal (e.g. there is no notion of distance) and takes a
finite number of values. Prior work has also proposed HD
encoding methods for different applications and data types,
including speech recognition [19], DNA sequencing [23],
activity recognition [24], and clustering [25]. For example,
work in [13], [26] introduced the idea of fully binary learning
in HD computing. There are also several research that try to
accelerate HD computing in both existing [11], [27], [28] and
emerging hardware [22], [29].

Regardless of the data type and the encoding, HD computing
cannot train a proper model with a small size of training
data. Our primary evaluation on 18 popular datasets listed
in Section VI-B shows that HD computing accuracy highly
depends on the amount of labeled data. For example, training
HD computing with 10% of labeled data reduces the HD
classification accuracy by 34.6% as compared to accessing the
entire training data. In practice, there are very few amounts
of labeled data, thus the algorithm should be able to get the
maximum accuracy using such a small portion of data. In
this paper, we propose a novel self-learning algorithm for HD
computing which enables training with significantly lower data
sizes.

III. SEMIHD: HD SELF-TRAINING

A. Overview

In this paper, we propose SemiHD, a self-training approach
which enables Hyperdimensional (HD) computing to learn to
work with an extremely low number of labeled data points.
Figure 1 shows an overview of the proposed SemiHD algo-
rithm. Our approach trains HD in the following steps:
• Encoding: The first step is to encode all data points

into high-dimensional space, where each data represents a
vector with D = 10,000 dimensions (•A ). This encoding
applies on both labeled and unlabeled data points and can
be different depending on the data type (details explained
in Section III-B)

• HD Training: SemiHD starts training a model based
on the available encoded labeled data. This training can
be performed by the accumulation of all encoded data
points corresponding to a class. The result of training is
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Fig. 1. Overview of SemiHD framework supporting self-training in high-dimensional space.

k hypervectors, each representing one of the classes (•B ).
The details of the training are explained in Section III-C.

• Predict Label of Unlabeled Data: The trained HD
model is ready to be used at the inference/test phase.
However, the goal of SemiHD is to improve the classifi-
cation accuracy by expanding the labeled data. SemiHD
exploits the trained HD model in order to assign a label to
each unlabeled data. Labeling is similar to the inference
task that we check the similarity of each unlabeled data
with all the class hypervectors. Each data point gets a
label of a class which it has the highest similarity with it
(•C ).

• Determine Prediction Confidence: We use the differ-
ence between the highest top two matches across all class
hypervectors to denote the confidence level of the predic-
tion. Top two similarities close to each other indicates that
SemiHD has less confidence in its prediction (•D ).

• Expand Labeled Data: SemiHD selects and adds S% of
unlabeled data with the highest confidence to labeled data.
The value of S is an expansion rate which determines the
amount of changes SemiHD makes on the labeled data
(•E ).

• Convergence Condition: We start training a new HD
model based on the expanded training data by going to
again to ”HD training step” (•F ). SemiHD also checks for
the convergence by looking at the classification accuracy
during the last three iterations. SemiHD stops the iterative
process if the accuracy does not change more than 0.1%.

• Inference: After convergence, the model can be used
to perform the inference task. In HD computing, the
inference can be performed by checking the similarity
of each encoded test data with the trained model (•G ).

B. Encoding

Figure 2a shows the overview of HD computing performing
the classification task on high-dimensional space. HD consists
of three main modules: encoding, training, and associative
search. SemiHD functionality is independent of the encoding
module. In this work, we use the most general encoding
approach which maps vectors F = { f1, f2, . . . , fn}, with n
features ( fi ∈N), into H = {h1, h2, . . . , hD} with D dimensions
(hi ∈ {0,1}D) [8], [30]. Figure 2b shows the functionality of
the HD encoding module. This encoding finds the minimum
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and maximum feature values and quantizes that range into m
levels. Then, it assigns a random binary hypervector with D
dimensions to each of the quantized levels {L1, . . . ,Lm}. Simi-
larly, the encoding module assigns a random binary hypervec-
tor to each feature index, {ID1, . . . , IDn}, where ID ∈ {0,1}D.
The encoding happens by combining the feature values over
different indices, where the hypervectors corresponding to the
feature indices preserves the position of features in a combined
set:

H = ID1⊕L1 + ID2⊕ L2 + . . . + IDn⊕Ln.

where H is the encoded hypervector and Li is the hypervector
corresponding to the i-th feature of vector F . The encoded
hypervector can be binarized by applying majority function
on each of the dimensions. All elements with a larger value
than n/2 will be assigned to ”1” while other dimensions get
”0” value.

C. HD Training

In HD, training is performed in high-dimensional space
by element-wise addition of all encoded hypervectors in a
class. For example, in a face detection application, the training
module accumulates all hypervectors corresponding to ”face”
and ”no-face” in two different hypervectors. In general, the
result of training will be k hypervectors with D dimensions,
where k is the number of classes. For example, the ith class
hypervector can be computed as: Ci = ∑∀ j∈classi Hj



D. Data Labeling

Given the limited size of the labeled data, the original
predictions made can be inaccurate. Early mistakes made on
unlabeled data predictions can reinforce themselves as there
is no distinguishing between the originally given labels and
the labels generated by the classifier itself. Therefore, we
introduce a confidence level on each prediction on unlabeled
data. In SemiHD, we apply self-training as a wrapper method
combined with hyperdimensional computing. Algorithm 1
describes the steps of self-training with confidence. Let V be
the hypervector representing one unlabeled data point, i be
the predicted label and j be the second most likely guess.
Let Ci denotes the ith class hypervector and C j denotes the
jth class hypervector. Here we define the confidence level of
our prediction on the data point as the difference between the
similarities of V with Ci and C j classes:

∆δ(V ) = δ (V,Ci)−δ (V,C j)

where δ is cosine or Hamming distance similarity for non-
binary and binary models respectively. In Section VI-F, we
explain that the selection of the model type depends on the
underlying hardware (CPU vs. FPGA).

Only the predictions that have the highest confidence are
considered for the labeled data expansion. SemiHD adds S%
of unlabeled data with the highest confidence level into the
labeled data. After that, SemiHD starts training a new HD
model based on the expanded training data. The process of data
expansion continues iteratively until the classification accuracy
changes less than ε = 0.1% during three consecutive iterations.
Figure 3 shows the impact of retraining on the classification
accuracy of three different datasets (S = 5%), when SemiHD
only access to 10% labeled data. Our evaluation shows that
SemiHD significantly increases the HD classification accuracy
during different retraining iterations. This accuracy improve-
ment saturates after 10-15 iterations, thus these applications
can have early convergence, e.g., 10 iterations for bupa dataset
which aims to detect patients liver disorder.

E. Inference

SemiHD uses encoding and associative search for clas-
sification. First, SemiHD uses the same encoding module,
explained in Section III-B, to map a test data point to a
query hypervector. In HD space, the classification task then
is performed by checking the similarity of the query with all
class hypervectors. Each data point is assigned to a class which
it has the highest similarity. When HD information is stored as
the pattern of non-binary values, the cosine is a suitable metric
for similarity check. For the HD model with binary values,
SemiHD uses Hamming distance as the similarity metric.

IV. SEMIHD FRAMEWORK SUPPORT

We design a novel framework which enables users to trade
SemiHD accuracy and efficiency. Figure 4 shows an overview
of the proposed framework. In this framework, users can select
between high accuracy or high-performance computation and
also they can specify the level of reliability that they expect the
model to provide. Here we define the reliability as a capability
of SemiHD in detecting uncorrelated test data which are out

Algorithm 1 SemiHD algorithm with confidence
1: while unlabeledData.size > 0 do
2: Train ({C1, · · · ,Ck}, labeledData) V ∈ unlabeledData
3: Label← argmax j=1:k{δ 〈V,Ci〉}
4: ∆δV ← argmax j=1:k{δ 〈V,Ci〉}−argmax j 6=i{δ 〈V,Ci〉}
5: V ∈ unlabeledData
6: Find(∆δV , S)
7: labeledData← (V,Label)
8: Remove← (V,unlabeledData)
9:

10: end while
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Fig. 3. Impact of retraining on the SemiHD accuracy.

of the classification scope. Our framework gets applications
and user specifications as inputs. Application’s inputs are the
number of features (n), the number of classes (k), and the
number of labeled/unlabeled data points. Similarly, users can
select between the high efficient or high accurate classification
as well the level of reliability that they expect from SemiHD
model. In the following, we explain how Design Analyzer
selects the SemiHD training/inference parameters in order to
satisfy the user’s expectation.

A. Accuracy vs Efficiency

SemiHD classification accuracy depends on two parameters:
dimensionality of the hypervectors and confidence threshold
during training.

Dimensionality: This parameter affects both training and
inference efficiency since SemiHD requires longer sized vec-
tors. Large dimensionality increases the classification accu-
racy, but this accuracy saturates when vector size is larger than
required. Our framework identifies a mathematical approach
to identify the required dimensionality of the hypervectors
for each application before training. Theoretically, each hy-
pervector can store a limited amount of information. Con-
sidering a hypervector with D dimensions in an application
with k classes, each class hypervector can store maximum
information of D/2k. In other words, each class hypervector
can be stored at most D/2k orthogonal hypervectors. To
store more information in a class hypervector, we require a
class hypervector with higher dimensionality. Assuming all
encoded training data is orthogonal (worst-case scenario), we
can estimate the dimensionality as:

argmaxi=1:k{# labeled datai}< D/2K

The maximum number of labeled data in a class determines the
dimensionality of hypervectors. SemiHD exploits this equation
to estimate the dimensionality of the encoded data assuming
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all data points are orthogonal. In practice, training data points
are not dissimilar, thus SemiHD estimates the required dimen-
sionality based on the distribution of the training data points.
Datasets with a wide distribution (σ�) require dimensionality
close to a maximum bound, while datasets with a narrow
distribution require much lower dimensionality.

Expansion Rate: In SemiHD, the expansion rate, S, pro-
vides a trade-off between the training execution time and
classification accuracy. A larger expansion rate requires fewer
iterations to converge. In every iteration, SemiHD adds a larger
fraction of unlabeled data into the training data, resulting in
more changes in the model. In contrast, a small expansion
rate leads to minor changes in the model, thus providing a
slow training process. Expansion rate also affects SemiHD
classification accuracy. A large expansion rate increases the
amount of fluctuation in the model during retraining which
increases the possibility of divergence. In contrast, a small
expansion rate results in higher accuracy but with the slow
training process.

B. Model Reliability

One major advantage of HD computing is having an in-
terpretative model. During inference, SemiHD selects a class
with the highest similarity to encoded test data as an output.
However, in practice, none of the classes might correspond to
input data. Current HD computing algorithms are unable to
provide a correct response to these queries. For example, in
voice recognition problem, an input data with ”cat” image will
match with one of the class hypervectors, while in reality, it
does not correspond to any of the classes. We address this
issue by proposing an approach which decides if an input
data is irrelevant to the classes. During inference, SemiHD
finds a class hypervector which has the highest similarity to an
encoded test data. If the similarity of a data point is less than a
reliability threshold value, called Rth, SemiHD considers such
input data to be out of the classification scope. In conventional
HD computing approaches, the model is not reliable (Rth = 0)
meaning that a data point will always match with a class
with the highest similarity. However, we can select larger
confidence, e.g., Rth = 0.8, to ensure that if a data point is less
than 0.8 similar to class hypervector, it is considered as out of
scope data. SemiHD does not achieve model reliability freely.
Increasing the reliability of the model can result in losing
classification accuracy, as several relevant data points may be
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Fig. 5. FPGA implementation of SemiHD inference.

incorrectly detected as out of scope data. In Section VI-D, we
explore the impact of reliability confidence on SemiHD.

V. SEMIHD ACCELERATION

A large portion of SemiHD inference devotes to the encod-
ing module mapping query data points into high-dimensional
space. Since the existing processing cores, e.g, CPUs, are not
designed to work with long binary vectors, here we design an
FPGA implementation of SemiHD. FPGA can be programmed
to support SemiHD operations with high efficiency using
available lockup table and DSP resources. In the following,
we explain the details of SemiHD implementation.

Encoding: Although binary and non-binary models use
different associative searches, the encoding is common among
both models. Figure 5 shows an overview of the FPGA
implementation of the encoding module. The first step is to
quantize the feature vector, F , and assign it to one of the
m level hypervectors (•A ). Next, our design applies an XOR
operation between each ID and level hypervector (•B ). The
result of XOR operations are then accumulated using counter
blocks (•C ). The quantization, XOR, and count operations
can all be implemented using lookup tables (LUTs) resources
of FPGA. The Performance of the encoding depends on the
number of features and the dimensionality of the encoded data,
which determine the required size of the XOR array and the
number/size of counter blocks. For the binary model, SemiHD
maps each dimension of the encoded data into binary using
comparator blocks which is also implemented by LUTs.

Binarized Associative Search: The associative search on
the binary model can be performed using another XOR array
which computes the similarity of each class hypervector with
an input query (•D ). The result of XOR determines the number
of bit differences between each query and class hypervectors
which are computed using a set of tree-based adders (•E ).
Finally, a comparator block finds a class which has the maxi-
mum similarity with the query hypervector. We implemented
SemiHD codes in order to maximize resource utilization and
throughput. Since both encoding and associative search blocks
are sharing the same resources (LUTs), our implementation
partially generates a part of encoded data which can be used
for the associative search. Depending on the application, i.e.,



the number of features and number of classes, our implementa-
tion balances the number of resources such that the maximum
number of dimensions can be computed at each cycle. This is
an important fact since assigning a large portion of the LUTs
to the encoding block results in generating a huge amount of
dimensions which cannot be used by the associative search
block. Similarly, assigning a large portion of FPGA resources
to associative search blocks results in lower resources for
encoding which reduces SemiHD throughput.

Non-Binary Associative Search: For non-binary models,
SemiHD compares the similarity of the query and class
hypervectors using dot product. This similarity search can be
performed using DSPs available on the FPGA block. Since
the encoding and associative search blocks do not share any
resources, the throughput of the encoding module depends on
the dimensions that can be generated and consumed by the
encoding and associative search. The number of dimensions
depends on the available LUTs and DSPs. Our evaluation
shows that in applications with large feature size, the encoding
is the main bottleneck of the computation. In contrast, for
applications with a large number of DSPs, the associative
search limits the maximum throughput.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup
We have implemented SemiHD framework including encod-

ing, training, and inference in high-dimensional space using
C++. We evaluated the system on two embedded platforms:
Raspberry Pi 3 with ARM Cortex A53 CPU and Kintex-7
FPGA. For CPU, the SemiHD code has been written in C++
and optimized for performance and the power is measured
using Hioki 3334 power meter. For FPGA, we fully implement
SemiHD inference using Verilog. We verify the timing and the
functionality of the sparse models by synthesizing them using
Xilinx Vivado Design Suite [31]. The synthesis code has been
implemented on the Kintex-7 FPGA KC705 Evaluation Kit.
We compare the SemiHD accuracy with other light-weight
classifiers including pruned Decision Tree, Naive Bayes, and
Support Vector Machine. We exploited Scikit-learn library [32]
for the model training and testing and used grid search to find
the best hyperparameters.

B. SemiHD Accuracy vs Other Classifiers
We compare the accuracy of SemiHD with the other

light-weight classifiers used for semi-supervised learning. To
achieve maximum accuracy, all algorithms have been trained
for 40 iterations. We report SemiHD accuracy for two cases:
using non-binarized and binarized models. The SemiHD model
binarization happens once after the training. Using non-
binarized model, SemiHD needs to use cosine similarity to
find the most similar class at the inference. Model binarization
simplifies the SemiHD similarity to a hardware-friendly metric
such as Hamming distance. This model binarization comes at
the expense of losing the classification accuracy. For SemiHD,
we used D = 4000 and expansion rate of S = 5%. All results
are reported for 18 popular datasets [33] listed in Table I.
Our evaluation shows that SemiHD using non-binarized model
can provide significantly higher classification accuracy as com-
pared to other approaches. For example, SemiHD can achieve

TABLE I
CLASSIFICATION ACCURACY OF SEMIHD AND OTHER ALGORITHMS

SELF-TRAINING ON 10% LABELED DATA.

Datasets # Ex. DT NB SVM
SemiHD
Non-bin

SemiHD
Binary

abalone 4174 19.4% 22.4% 21.7% 42.4% 37.8%
chess 3196 85.1% 58.9% 89.7% 97.7% 94.3%

coil2000 9822 55.7% 53.1% 60.9% 94.1% 88.5%
contraceptive 1473 95.6% 80.3% 89.8% 88.0% 82.1%

magic 19020 82.1% 72.3% 83.8% 79.5% 74.1%
marketing 8993 27.7% 26.2% 23.4% 33.6% 30.2%
mushroom 8124 99.6% 92.4% 99.4% 98.4% 91.9%

page-blocks 5472 95.2% 86.2% 94.0% 96.8% 90.8%
penbased 10992 89.0% 81.5% 97.5% 97.9% 92.8%
phoneme 5404 78.0% 73.5% 82.5% 78.3% 73.8%
satimage 6435 80.3% 78.4% 82.4% 78.5% 74.0%
segment 2310 89.9% 69.2% 91.2% 89.8% 85.0%

spambase 4597 86.6% 83.6% 85.4% 90.5% 85.1%
texture 5500 82.6% 72.6% 96.4% 99.2% 94.1%
thyroid 7200 99.1% 90.6% 93.0% 96.3% 92.2%

twonorm 7400 80.6% 97.7% 97.2% 97.9% 93.1%
yeast 1484 47.7% 44.1% 47.1% 57.1% 53.0%

Average NA 76.1% 69.6% 78.5% 83.3% 78.4%

Fig. 6. Impact of expansion rate on SemiHD classification accuracy and the
number of required iterations.

4.8% and 7.2% higher accuracy as compared to an SVM
and DT respectively. In addition, we observe that SemiHD
using binarized model can still provide comparable accuracy
to SVM, while its accuracy is 2.3% and 8.8% higher than DT
and NB respectively.

C. Expansion Rate

Figure 6 shows the impact of the expansion rate on the
SemiHD classification accuracy and the number of required
iterations to converge. The results are the average values on
18 tested datasets. Our evaluation shows that increasing the
expansion rate from 5% slightly degrades SemiHD classifica-
tion accuracy. SemiHD using a large expansion rate adds many
data points to the labeled data which we are not sure about the
correctness of their labels. This can cause a large fluctuation
on the classification accuracy during retraining which results
in a possible divergence. For example, we observe that 55%
of the tested applications diverge when the expansion rate is
equal to or larger than 35%. From another hand, using a larger
expansion rate accelerates the training by reducing the number
of required retraining iterations. Using a large expansion rate
is equivalent to using a large learning rate. SemiHD uses an
expansion rate to provide a trade-off between the classification
accuracy and the training speedup. Depending on the user
requirement, SemiHD can use a large expansion rate to provide
fast training with acceptable classification accuracy or use
small rate for high accuracy but relatively slow training.
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D. Dimensionality & Reliability
Dimensionality: SemiHD can exploit hypervector dimen-

sions as a parameter to trade efficiency and accuracy. Re-
gardless of the dimension of the model at training, SemiHD
can use a model in lower dimensions in order to accelerate
the SemiHD inference. In HD computing the dimensions are
independent, thus SemiHD can drop any arbitrary dimen-
sion in order to accelerate the computation. Figure 7 shows
the classification accuracy and energy-delay product (EDP)
improvement of SemiHD when the hypervector dimension
changes from D= 500 to 3000. All EDP results are normalized
to EDP of SemiHD with D= 3000 dimensions. Our evaluation
shows that SemiHD can achieve maximum accuracy using
dimensions equal to or larger than D = 1500. In addition,
reducing dimension to D = 500 (D = 1000), SemiHD can
achieve 17.9× and 5.4× higher EDP than SemiHD with D =
3000 while providing only 7.1% (2.5%) lower classification
accuracy.
Reliability: To check the reliability of SemiHD model, we
perform an experiment to show the response of the current
HD model in classifying out of scope data. We selected
random data points such that they are completely irrelevant
to the existing classes. We have trained SemiHD model for
random data such that the model learns to return ”I don’t
know” whenever test data has less similarity with all class
hypervectors. Figure 7b shows the impact of the reliability
confidence, Rth, on the classification accuracy and reliability
of SemiHD. The classification accuracy is defined as the
percentage of data points (excluding random data) that are
correctly classified by SemiHD. Similarly, the reliability of
the model is defined as a portion of out of scope data points
which can be correctly detected by SemiHD. Our evaluation
shows that reliability confidence results in a trade-off between
model accuracy and reliability. Using small confidence, e.g.,
Rth = 0.75, SemiHD provides high classification accuracy, but
the model is not reliable to detect out of scope data points.
Using large reliability confidence increases the quality loss
in the main classifier since several data points will be incor-
rectly detected as out of scope data. However, this approach
significantly improves the reliability of the model (as shown
in Figure 7b). Depending on the application, our framework
enables users to identify the importance of accuracy or model
reliability. Our evaluation shows that using Rth = 0.8 provides
the highest accuracy in identifying out of scope data. It should
be noted that in order to provide more accurate results, the
reliability confidence can be extracted individually for each
application.
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Fig. 8. Impact of the percentage of labeled data on maximum accuracy and
number of required iterations.

E. SemiHD & Percentage of Labeled

Figure 8 shows the impact of the percentage of the labeled
data on SemiHD classification accuracy and the number of
required retraining iterations. The results are the average
values on all tested datasets. As we expected, SemiHD can
achieve higher accuracy when classifying applications with
larger labeled data. Applications with larger labeled data
require fewer iterations to converge. Our evaluation shows that
SemiHD using 30% labeled data can achieve, on average, 2.4%
higher classification accuracy as compared to SemiHD using
10% labeled data. Figure 8 also compares the classification
accuracy of SemiHD with the baseline HD that trained based
on the labeled data. Our evaluations show that SemiHD can
provide larger shift on the classification accuracy when using a
small amount of labeled data. For example, using 10% labeled
data, SemiHD can boost the HD classification accuracy by
10.2%, while the accuracy boost is only 8.3% on 30% labeled
data.

F. SemiHD Acceleration

As we explained in Section VI-B, SemiHD using non-
binary model provides significantly higher accuracy than the
binary model. We reduce the dimensionality of the non-binary
model to D = 500 such that it provides the same accuracy as
the binary model with full dimensionality (D= 3000). Table II
shows the energy consumption and execution time of SemiHD
on FPGA and CPU when non-binary and binary models are
using D = 500 and 3000 dimensions respectively. Here we
observe that the selection of low dimensional non-binary or
high-dimensional binary models depends on the underlying
hardware, i.e., CPU or FPGA.

Let’s consider SemiHD classification with two modules: en-
coder and classifier. Regardless of mapping data to the binary
or non-binary domain, SemiHD spends a similar amount of
energy and time for the encoding. The cost of the encoding
module increases linearly with the number of dimensions.
Therefore, the encoding module in the binary model has a
higher cost than the non-binary model with lower dimen-
sion. From other hands, mapping to binary domain reduces
the computation complexity of the classification task. In the
binary domain, SemiHD can be trained and tested using the
accumulation of the binary vectors and performing Hamming
distance similarity. FPGA can accelerate training and inference
computation using LUT resources. However, for a non-binary
model, FPGA requires to use DSPs in order to perform training
accumulation and associative search (dot product). Due to the
limited number of DSPs, the efficiency of SemiHD with the
non-binary model is bounded by the number of DSPs. In



TABLE II
EXECUTION TIME AND ENERGY CONSUMPTION OF DIFFERENT

ALGORITHMS DURING TRAINING AND INFERENCE.

CPU FPGA
Non-binary Binary Non-binary Binary

Training Exe.(s) 4.43 5.34 5.22 0.35
Energy(J) 13.67 11.95 9.36 1.04

Inference Exe.(ms) 0.64 0.69 0.73 0.09
Energy(mJ) 2.27 1.94 2.09 0.18

contrast, CPUs are not designed to work with very long sized
binary vectors, thus they provide lower efficiency during the
classification when using long binary vectors. We observe that
CPU provides high efficiency when running non-binary low-
dimensional vectors (D = 500), while FPGA is more efficient
using high-dimensional binary vectors (D = 3000). Table II
compares the efficiency of SemiHD using binary and non-
binary models on both FPGA and CPU platforms. The results
show that SemiHD using FPGA implementation (D= 500) can
achieve 7.11× faster and 12.6× energy efficiency as compared
to the best CPU implementation (D = 3000) which provides
the same accuracy.

VII. CONCLUSION

In this paper, we propose SemiHD, a novel semi-supervised
algorithm based on brain-inspired HD computing. SemiHD
maps data points into high-dimensional space and trains a
model based on the available labeled data. SemiHD iteratively
expands the training data by labeling data points which can be
classified by the current model with high confidence. We also
proposed a framework which enables users to trade accuracy-
efficiency along with the model reliability at runtime. Our
evaluation shows that SemiHD can improve the classification
accuracy of supervised HD by 10.2% and provide faster
computation as compared to state-of-the-art semi-supervised
approaches.
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