
Robust Privacy-Preserving Fingerprint
Authentication

Ye Zhang and Farinaz Koushanfar
Dept. of ECE, Rice University

Houston, Texas, USA
{yz61, farinaz}@rice.edu

Abstract—This paper presents the first scalable, efficient, and
reliable privacy-preserving fingerprint authentication based on
minutiae representation. Our method is provably secure by
leveraging the Yao’s classic Garbled Circuit (GC) protocol. While
the concept of using GC for secure fingerprint matching has
been suggested earlier, to the best of our knowledge, no prior
reliable method or implementation applicable to real fingerprint
data has been available. Our technique achieves both accuracy
and practicability by customizing a widely adopted minutiae-
based fingerprint matching algorithm, Bozorth matcher, as our
core authentication engine. We modify the Bozorth matcher
and identify certain sensitive parts of this algorithm. For these
critical parts, we create a sequential circuit description which
can be efficiently synthesized and customized to GC using
the TinyGarble framework. We show evaluations of our mod-
ified matching algorithm on a standard fingerprint database
FVC2002 DB2 to demonstrate its reliability. The implementation
of privacy-preserving fingerprint authentication using Synopsis
Design Compiler on a commercial Intel processor shows the
efficiency and scalability of the proposed methodologies.

Index Terms—Secure Function Evaluation, Secure Multiparty
Computation, Fingerprint Authentication, Garbled Circuit

I. INTRODUCTION

Biometric based methods have been widely deployed in var-
ious application domains, ranging from government programs
to personal devices. Examples of such applications include
international visa system, national ID card, and personal
information access control on mobile phones. Biometric traits
have the properties of universality (the characteristic is owned
by each person), distinctiveness (two individuals are suffi-
ciently different regarding to the characteristic), permanence
(invariant of time with respect to matching requirements), and
collectability (quantitatively measurable), which ensure the
usefulness and high reliability of biometric based applications
[1]. However, the popularity of biometric data raises significant
privacy concerns, especially when the matching process is
performed in partially untrusted environments. Therefore, it is
of paramount importance to develop techniques that process
the biometric data in a privacy-preserving way.

Earlier work in securing fingerprint authentication can be
broadly classified into three categories. First, heuristic methods
for fingerprint privacy-preservation are available, but these lack
provable security guarantees [2]. Second, methods based on
trusted hardware or TPM only work in certain scenarios such
as mobile phones, but they are inapplicable to third party au-
thentication applications [3]. Third, biometric matching based
on secure function evaluation methods, e.g., Homomorphic

Encryption (HE) or GC, have only been conceptually sug-
gested without actual realization or implementation [4], [5].
For example, the work in [4] suggested application of HE on
an efficient fingerprint matching algorithm based on Finger-
Code, which did not include implementation or evaluations.
The reason is likely the unreliability of the FingerCode for
authenticating noisy biometric data. As another example, the
authors in [5] proposed using GC on a standard minutiae-based
fingerprint matching algorithm which computes the minimum
Euclidean distance between two minutiae sets. However, the
method assumed a pre-alignment procedure is available and
performed matching on adjusted fingerprints to have a reliable
match. Having pre-alignment is an unrealistic assumption and
including the alignment in their matching algorithm would
introduce a huge computational overhead.

In this paper, we propose the first provably secure, efficient,
discriminative and scalable minutiae-based fingerprint authen-
tication that is built upon the classic Yao’s GC protocol. The
fingerprint matching problem is as follows. Assume there are
two parties, Alice and Bob, where Alice possesses a personal
fingerprint image (which has passed the liveliness tests linking
it to an alive person), and Bob holds a private database
with a collection of user fingerprint data. The two parties
aim to execute the fingerprint authentication algorithm with-
out revealing their private fingerprint data. In particular, the
authentication algorithm determines whether the fingerprint
data provided by Alice belongs to the database held by Bob.
The settings correspond to real world scenarios where Alice
receives authentication requests from a partially untrusted
server Bob. For Alice, directly sending her plain fingerprint
template to the database is privacy intrusive, as Bob would be
able to record Alice’s profile if she’s not already registered in
the database. Also Bob cannot risk exposing its private data to
external parties. To achieve a privacy-friendly solution, Alice
and Bob agree that the matching algorithm is publicly available
for both sides except for the threshold that determines the
Genuine Acceptance Rate (GAR) and False Acceptance Rate
(FAR) of the fingerprint database system, which is privately
owned by Bob. Meanwhile, after running the algorithm Alice
must learn only a result showing if a match is found or not. We
also assume that Alice and Bob both operate in a semi-honest
manner; namely, they are supposed to process the computation
following the protocol, but they may try to learn additional
information about the other sides private data during protocol
execution.

This paper suggests customizing a highly reliable
alignment-free fingerprint matching algorithm as our core
fingerprint authentication engine. As our modified algorithm
evaluates larger number of inputs, it is impractical to per-
form circuit generation based on GC approaches that only
accept function description as combinational circuits. A recent
breakthrough in this domain was introduced by TinyGarble,
which allows describing the function as a sequential circuit
and enables utilizing hardware synthesis methods to address
the problem [6]. We create a sequential circuit description of
selected parts of our customized Bozorth matcher so as to
achieve compactness and scalability while adopting the Tiny-
Garble framework. Our contributions are briefly summarized
as follows:

1) Introduction of the first scalable, efficient and reliable
methodology for privacy-preserving fingerprint authen-
tication based on minutiae representation.

2) Development of an efficient and reliable minutiae-based
fingerprint authentication algorithm by customizing a
widely used fingerprint matching algorithm – Bozorth
matcher.

3) Construction of a privacy-preserving protocol for per-
forming fingerprint authentication based on our cus-
tomized Bozorth matcher, which is described as a
sequential logic to reduce circuit size and memory
requirement by adopting the TinyGarble framework.
Our construction is generalizable to secure multi-party
fingerprint authentication.

4) Proof-of-concept implementation of our privacy-
preserving fingerprint matching algorithm using
Synopsys Design Vision on an Intel processor to
assess circuit size and timing performance. For
instance, we have achieved a highly compact and
reliable implementation, which requires 134 KB for
storage and 2.24 × 109 clock cycles (0.67s) for circuit
garbling/evaluation.

II. PRIOR WORK

Several earlier works focus on the area of secure multi-
party computation, ranging from the optimization of related
cryptographic tools to customized secure protocol generation
[7], [8], [9], [10]. The existence of these tools has motivated
new approaches for secure biometric data processing, e.g.,
[11], [12], [4], [5], [13]. The available literature has mostly
relied on HE which encrypts the data in a way that applying
mathematical function on the encrypted message and then
decrypts it, generates the same results as preforming the
operations on the plain message. For example, Barni et al.
report a secure protocol of FingerCode based authentication
[14] by leveraging HE [4]. The matching proceeds by com-
puting the Euclidean distance of two FingerCode vectors.
Even with protocol-level improvements, their implementation
is still impractical for real applications due to the lack of
efficiency using HE. By cooperating GC with HE, Blanton
et al. present a privacy preserving protocol for FingerCode
based identification with notable reduction in the overhead [5].

However, as FingerCode is not considered as a discriminative
representation of a fingerprint, such approach is unreliable,
thus impractical for real applications.

Based on GC, [5] has also proposed a minutiae-based
method by finding the maximum number of exclusive minutiae
pairs between two fingerprints. Given a minutia in a finger-
print, it is paired with a minutia in another fingerprint which
has the minimum Euclidean distance among all unpaired
minutiae. However, without pre-alignment, the method cannot
handle image rotation and translation, for e.g., a rotated variant
where a certain minutiae is moved to a new location far from
its original position will not be matched properly.

In contrast with previous fingerprint matchers, we adopt a
robust and highly reliable minutiae-based matching algorithm.
The reliability is ensured by employing the relative measure-
ments of each minutia with all the others in a fingerprint. Fur-
thermore, we evaluate our matching algorithm on a standard
fingerprint database.

To employ GC for a secure evaluation of the function, a
crucial step is to map and optimize the function into Boolean
logic. A number of compiler/software techniques have been
proposed to realize this conversion[10], [15], [16]. However,
they mainly focus on translating the function into combina-
tional description, which incurs huge memory requirements
for evaluating functions with a large input size. In biometric
applications, the memory requirement for comparing two sets
of biometric features is proportional to the square of the size
of feature set. A very recent work reported by Songhori et
al. introduces a novel automated method, TinyGarble, for
generating and optimizing compressed Boolean circuits used
in Yao’s GC protocol [17]. A great improvement in circuit
compactness and scalability is achieved by using a sequential
circuit description for GC and TinyGarble optimizations.

III. PRELIMINARIES

We use garbled circuits and oblivious transfer as our
primary cryptographic tools. These techniques are briefly
reviewed here.

A. Oblivious Transfer

Oblivious Transfer (OT) is a cryptographic protocol in
which a sender transfers one of a set of possible messages to a
receiver, yet remains oblivious about which one has been sent.
In a 1-out-of-2 OT, S (sender) provides a two-tuple (x1, x2);
R (receiver) provides a selection bit (0, 1). S transfers xσ to
R without revealing other values in the tuple, while learning
nothing about R’s selection [18].

B. Yao’s GC Protocol

Yao’s Garbled circuits is a protocol that enables secure two-
party computation [19]. Specifically, two semi-honest parties,
Alice and Bob, want to jointly compute a function f on
their secret inputs. The function needs to be represented as
a combinational Boolean circuit. Alice, the garbler, maps the
plain values of each wire to random symmetric keys and
generates an encrypted truth table for each gate according to

the possible combinations of the input keys. Alice then sends
to Bob the encrypted truth tables and keys corresponding to
her input values. Bob, the evaluator, obliviously receives the
keys corresponding to his inputs through OT. Bob evaluates
the circuit gate by gate using these keys and encrypted truth
tables until he evaluates all gates. Finally, Alice provides a
mapping from the encrypted output to plain output.

IV. BOZORTH ALGORITHM AND MODIFICATIONS

Various algorithms have been proposed and implemented
for matching two fingerprints with minutiae representation. A
type of method for matching two minutiae-based fingerprint
templates contains an alignment stage, which maximizes the
number of corresponding matching minutiae, and a Euclidean
distance computation stage, in which the similarity of two
fingerprints is evaluated [20], [21], [22]. Since additional local
features of a fingerprint, such as core or delta points, are
always required to assist alignment, an optimal alignment
cannot be guaranteed given images with lower resolution
or partial information where reference points are missing.
In order to keep generality, National Institute of Standards
and Technology (NIST) has developed a rotation and transla-
tion invariant fingerprint matching algorithm, called Bozorth
matcher.

The official description of Bozorth matcher is given in [23].
Fingerprint templates with minutiae represented by location
and local ridge orientation are taken as the inputs of an original
Bozorth matcher. The algorithm includes three major steps:

1) Constructing intra-fingerprint minutia-pair(comparison)
tables.

2) Constructing inter-fingerprint pair-pair (compatibility)
table by comparing the two intra-fingerprint minutiae
pair tables, where sufficiently similar minutia pairs are
considered to be compatible.

3) Traversing the inter-fingerprint compatibility table to
build a web/cluster and accumulate a match score.

A. Original Bozorth Description

The first step in Bozorth algorithm is to construct an intra-
fingerprint minutia-pair table (or minutia-pair comparison ta-
ble) by computing the relative measurements of each minutia
in a fingerprint with all the others within a specified distance.
As it is shown in Figure 1, each minutia pair consists of
6 pieces of information, namely, the distance between the
pair dij , the orientations (β1, β2) of minutiae with respect
to the intervening line connecting them, the indexes (i, j)
of minutiae in a minutia pair, and the absolute angle θij
of the intervening line. Each entry of the comparison table
is represented by {dij , β1, β2, i, j, θij}. Among these relative
measurements, dij , β1 and β2 remain nearly constant no
matter how much the fingerprint is rotated or translated.
This property ensures the algorithm’s rotation and translation
invariance. The next step is to find the compatible entries
from minutia-pair comparison tables of two separate finger-
prints. Two minutia-pairs are compatible if the corresponding
distance dij and relative minutia angles (β1, β2) are within

Fig. 1: Minutia-pair and minutia-triplet.

some specified tolerances. The entry of the compatibility
table incorporates the information about two minutia-pairs. It
consists of {∆(θij,c, θij,s), ic, jc, is, js}, where ∆(θij,c, θij,s)
represents the angular difference between the intervening lines
of two minutia-pairs from two fingerprints, and (ic, jc) stand
for the indices of minutia pair from client, (is, js) are the
indices of corresponding minutia-pair from server. At this
point, a compatibility table consists of a list of compatibility
associations between two pairs of potentially corresponding
minutiae has been constructed. The last step is traversing the
compatibility table to find the longest path of linked minutia-
pairs. We then assign the length of the longest path to match
score.
B. Our Adaptations

In the final stage, the time complexity for searching the
longest path that links minutia-pairs exponentially grows with
respect to the path length. In order to achieve an efficient
implementation, we change the objective from finding the
longest path to counting the number of compatible minutia-
triplets. As it is shown in Figure 1, we define a minutia-
triplet (i, j, k) as two minutia-pairs, (i, j) and (i, k) in the
compatibility table sharing the same starting point i. Two
minutia-triplets are considered to be compatible if they satisfy
two requirements. Firstly, they are formed by two entries
in the compatibility table, one of whose starting minutia
indexes are the same as the corresponding ones of the other
(i′c = i′′c and i′s = i′′s). Secondly, the difference between the
global orientations of these two entries is within a certain
acceptable tolerance, (∆(∆(θij,c, θij,s)) < t). We observe
from the requirements that only the indices of starting points
in each entry of the compatibility table are used for counting
compatible triplets. Therefore, each entry of the compatibility
table can be constructed in the form of {θ′ij , ic, is}, where the
indices of the ending points of the compatible minutia-pairs
are omitted. We refer to this table as incomplete compatibility
table. In the following section, we propose privacy-preserving
protocol for performing fingerprint authentication based on the
customized Bozorth algorithm.

V. PRIVACY-PRESERVING FINGERPRINT AUTHENTICATION

In this section, we introduce a secure realization for a 1-
to-1 fingerprint matching algorithm. In order to achieve an

Protocol1 Privacy-preserving minutiae-based fingerprint authentication

1: INPUT : C provides a minutiae file X = {(x1, x1, α1),, (xm, ym, αm)}, S provides a private key K Yc =
{(xc

1, y
c
1, α

c
1),, (x

c
n, y

c
n, α

c
n)}.

2: OUTPUT : C learns a single-bit comparison result indicating if it belongs to a database held by S.
3: Protocol Steps:

1) Pre-computation:
a) S computes a minutia pair table for the template registered in the database.
b) C computes a minutia pair table based on its fingerprint template.

2) Online computation:
a) C generates the garbled circuit and sends it to S together with its encrypted pair-wise minutia-pair data.
b) S gets its encrypted minutia-pair data through OT and computes a garbled incomplete compatibility table, where

the second column(the index of the starting point of a minutia-pair derived from C) is encrypted by first applying
a linear transformation (ax+ b), then XOR the transformed index with a private key K generated by the server.
The encrypted incomplete compatibility table is released to C.

3) C decrypts the encrypted incomplete compatibility table and gets a partially encrypted incomplete compatible table,
where the number of compatible triplets rc can be calculated.

4) C and S jointly run a secure protocol based on garble circuits, which compares rc with the threshold rs provided by
the server. S generates the circuit and sends it to C together with the encrypted-output-to-plain-output mapping. C
then evaluates the circuit and learns the one-bit result.

efficient implementation, we have designed a pre-computation
stage for both parties computing their minutia-pair comparison
tables, and an offline computation stage on the client side
to perform the final stage of our matching algorithm, thus
greatly reducing the amount of computation enrolled in GC.
Besides, for security consideration, the intermediate results are
encrypted by server before sending to client.

A. A Secure 1-to-1 Protocol Construction

Consider two parties, Client and Server (our earlier Alice
and Bob), jointly run the customized Bozorth algorithm. We
assume that both sides know the length of each other’s
minutia-pair comparison table so as to determine the to-
tal number of rounds (by multiplying the lengths of two
minutia-pair tables) required to run the matching algorithm.
S (Server) owns a database with templates in the form of
Y = {(x′

1, y
′
1, α

′
1),, (x

′
n, y

′
n, α

′
n)} and a private key K,

where (x, y) is the minutia location, and α is the direction
of local ridge in which minutia resides, while C (Client) has
a biometric template X = {(x1, y1, α1),, (xm, ym, αm)}
consists of m minutiae. To perform authentication, C obtains
the fingerprint template and claims his/her identity, then S
provides a private key and the corresponding template with
the same ID, Yc, as the inputs of the protocol. The detailed
protocol is presented in Protocol1.

B. Security Argument

In this section, we briefly present a security argument for
our scheme, where intermediate results are visible to one party.
In particular, our goal is to demonstrate that, the client is not
able to learn anything beyond what is revealed by the protocol,
about the server’s database, while the server should not get any
information about the client’s minutiae file as well as the result
of the matching process.

We analyze our protocol step by step. Firstly, since the con-
struction of minutia-pair comparison table for both parties are
carried out independently, no information is possibly revealed.
In the online computation phase, secure data transmission
is done through OT, whose security has been discussed in
previous section. Subsequently, it is clear that all messages the
server received and processed is encrypted, thus a complete
privacy is ensured. The final stage compares two values under
GC protocol.

The remaining part is the third step of the protocol.
One might be concerned that the client learns additional
knowledge about the database as the client has access to
the partially encrypted version of incomplete compatibility
table. The second item of each entry in the compatibility
table is the index of the starting minutia of a minutia-pair
from the client’s fingerprint, which is encrypted by the server
using XOR encryption and linear transformation during GC
evaluation. Thus, owning the encrypted index, the client is
unable to locate the corresponding minutia-pair in its own
minutia-pair comparison table, not to mention inferring the
server’s minutiae information. We thereby demonstrate the
partially encrypted incomplete compatibility table is of no use
in recovering the other party’s minutiae information.

VI. IMPLEMENTATION

In this section, we present the implementation of the sensi-
tive parts (compatibility table construction) of our customized
Bozorth matcher based on Yao’s GC protocol. To implement
our fingerprint matching algorithm, we first describe it in
Verilog, then use existing HDL synthesis tools to map the
Verilog description to a list of basic binary gates, namely,
netlist. GC implementation used in our work is based on
TinyGarble [17].

Fig. 2: Customized Bozorth matcher architecture.

A sequential circuit can be decomposed to a combinational
circuit and a set of registers that hold the intermediate values.
To garble the sequential circuits, the combinational part is
garbled/evaluated in each sequential cycle, while the garbling
keys are stored in the registers, which are used as inputs in
the next cycle [17].

Figure 2 presents the complete circuit design, which is
composed of 3 parts, a comparison module, a transformation
module and a memory module. The comparison module de-
termines if two minutia-pairs, one from the client and one
from the server is compatible (shown in the up left). Once a
compatible pair is found, it goes to the transformation module
for further computation. The transformation module contains
three sub modules: one to compute the difference of the global
rotation of two pairs, another to encrypt the starting point of
a minutia-pair from the client’s input, and the third one to
determine the starting point of the corresponding minutia-pair
from the server’s input(shown in the middle). The memory
stores all compatible pairs (shown in the bottom right). Notice
that the memory module is implemented using MUX and
arrays of FFs [17].

VII. EVALUATION

We evaluate our privacy-preserving fingerprint authentica-
tion system by testing the reliability of the core matching
algorithm and assessing the timing performance of circuit
execution.

Our customized Bozorth matcher has been implemented in
C so as to determine its reliability and accuracy. We use a
standard fingerprint database FVC2002 DB2, which contains
10 fingerprint images of 8 distinct objects (80 in total). The
images are of the size 296x560 and collected by using an
optical sensor. The minutiae files are created by using the
minutiae detector MINDTCT, which is developed by NIST.

It is clear that the number of features involved in the
algorithm evaluation determines the detection rate. In our
case, the number of minutia-pairs to be evaluated is mainly
limited by the lengths of comparison and compatibility tables.
Therefore, we have tested our customized Bozorth algorithm
with different table lengths. For simplicity, we set the length of

comparison table (denoted as l) and the length of compatibility
table equal with each other. We test our matching algorithm on
FVC2002 DB2 and report GAR and FAR for different values
of l (shown in Table I). We also implement the core part
of our matching algorithm in Verilog and generate circuits
optimized for GC protocol using customized synthesis flow.
The circuit generation is done by Synopsis Design Compiler
2010.03-SP4 on a system with Linux RedHat Server 5.6, 8 GB
of memory, and Intel Xeon X5450 CPU at 3 GHz. For garbling
and evaluation, we utilize TinyGarble framework [17]. The
metrics are stated as follows[6]:

1) The circuit size (CS) is calculated according to:

CS = 24× q, (1)

where q is the total number of gates. For each gate,
two indices(16B) and one type(8B) are stored in circuit
description file.

2) The garbling/evaluating time is calculated as:

T = # of non-XOR × Tnon-XOR +# of XOR × TXOR, (2)

where Tnon-XOR is the execution time of a non-XOR
gate and TXOR is the execution time of an XOR gate,
which are 164 clock cycles(cc) and 62 cc respectively
measured on a conventional PC (Intel Core i7-2600 at
3.4 GHz) with Ubuntu 14.10 Desktop [6].

3) The total garbling time is calculated as:

Ttotal = # of rounds × T, (3)

where T is computed according to equation (2), and the
number of rounds is determined as the multiplication of
comparison table length from two parities.

The circuit size and timing performance for different values
of l are shown in Table II. As can be seen, the circuit size
grows linearly with minutia comparison/compatibility table
length, since memory elements dominate in circuit architec-
ture. The largest CS achieved in our work is 255 KB (l = 128),
which can easily fit in an embedded processor.

A highly efficient and compact implementation is achieved
if setting l to be 64. The total time for evaluating the garbled
algorithm is 2.24×109 clock cycles(0.67s) in our setting. The
detection rate found in Table I shows a GAR at 84.2% with
FAR at 0.1%.

We also emphasize that increasing circuit size (as well as
Ttotal) does not have a notable impact on improving detection
rate when l > 104. Therefore, l = 104 is recognized as the
best point that balances the detection rate and circuit size (effi-
ciency as well). The optimized implementation achieved in our
work requires 210 KB for storage and 9.18×109 clock cycles
for circuit garbling. Tested on FVC2002 DB2, GAR is reported
to be 90.4% with FAR at 0.1%, where FAR = 0.1% is a
typical setting for real fingerprint authentication/identification
systems.

The offline pre-computation phase of the protocol execution
is simulated on a conventional laptop with Intel core 5 at
2.6GHz. The offline computation on both sides takes only

FAR
l 64 72 80 88 96 104 112 120 128

0% 74.2% 75.9% 81.8% 83.2% 84.7 % 87.3% 87.3% 87.5% 90.2%
0.1% 84.2% 85.5% 86.3 % 87.3% 88.8 % 90.4% 91.0% 91.6% 92.0%
1.0% 89.4% 89.8% 90.0% 91.9% 93.4 % 95.5 % 95.7% 96.1% 96.5%

TABLE I: GAR vs FAR for different number of minutia-pairs

l 64 72 80 88 96 104 112 120 128

total gates 5175 6406 7041 7684 8320 8963 9607 10281 10886
non-XOR 2055 2319 2541 2767 2982 3190 3410 3678 3880
CS(KB) 134 150 165 180 195 210 225 241 255

T (cc)× 109 2.24 3.61 5.53 6.73 7.95 9.18 10.09 10.85 11.57

TABLE II: circuit size and timing evaluation for customized Bozorth matcher

around 20 milliseconds per match. Compared with circuit
evaluation stage, the timing for offline computation is trivial.

VIII. CONCLUSION

This paper presents the first compact, efficient and reliable
method for privacy-preserving fingerprint authentication based
on minutiae representation. We construct the core fingerprint
authentication algorithm by customizing a widely used match-
ing algorithm so as to achieve an efficient implementation. In
contrast to earlier suggested methods that were impractical
and unscalable, we suggest the first sequential description of
a fingerprint matching algorithm, which dramatically reduces
the circuit size leveraging the TinyGarble methodology. The
implementation of GC based fingerprint authentication is done
by Synopsis Design Compiler. The optimized implementa-
tion achieved in our work requires 210 KB for storage and
9.18 × 109 clock cycles for circuit evaluation. In addition, it
has a GAR as high as 90.4% with FAR at 0.1% when tested
on a standard fingerprint database. The accuracy numbers are
similar to the reported performance of the Bozorth algorithm
on plaintext fingerprint data.

ACKNOWLEDGMENT

This work is partially supported by an Office of Naval
Research grant (ONR-R17460), a National Science Founda-
tion grant (CNS-1059416), and a Multidisciplinary University
Research Initiative grant (FA9550-14-1-0351/Rice 14-0538) to
the ACES lab at Rice University.

REFERENCES

[1] A. K. Jain, A. Ross, and S. Prabhakar, “An introduction to biometric
recognition,” Circuits and Systems for Video Technology, IEEE Trans-
actions on, vol. 14, no. 1, pp. 4–20, 2004.

[2] D. M. Tumey, T. Xu, and C. Arndt, “Fingerprint verification system
utilizing a facial image-based heuristic search method,” Nov. 8 2005,
uS Patent 6,963,659.

[3] Y. Moon, H. Ho, K. Ng, S. Wan, and S. Wong, “Collaborative fingerprint
authentication by smart card and a trusted host,” in Electrical and
Computer Engineering, 2000 Canadian Conference on, vol. 1. IEEE,
2000, pp. 108–112.

[4] M. Barni, T. Bianchi, D. Catalano, M. Di Raimondo, R. Donida Labati,
P. Failla, D. Fiore, R. Lazzeretti, V. Piuri, F. Scotti et al., “Privacy-
preserving fingercode authentication,” in Proceedings of the 12th ACM
workshop on Multimedia and security. ACM, 2010, pp. 231–240.

[5] M. Blanton and P. Gasti, Secure and Efficient Iris and Fingerprint
Identification. Cambridge Scholars Publishing, 1 2015, ch. 9.

[6] E. M. Songhori, S. U. Hussain, A.-R. Sadeghi, and F. Koushanfar,
“Compacting privacy-preserving k-nearest neighbor search using logic
synthesis,” 2015.

[7] R. Cramer, I. Damgård, and J. B. Nielsen, Multiparty computation from
threshold homomorphic encryption. Springer, 2001.

[8] T. Rabin and M. Ben-Or, “Verifiable secret sharing and multiparty
protocols with honest majority,” in Proceedings of the twenty-first annual
ACM symposium on Theory of computing. ACM, 1989, pp. 73–85.

[9] D. Malkhi, N. Nisan, B. Pinkas, Y. Sella et al., “Fairplay-secure two-
party computation system.” in USENIX Security Symposium, vol. 4. San
Diego, CA, USA, 2004.

[10] W. Henecka, A.-R. Sadeghi, T. Schneider, I. Wehrenberg et al., “Tasty:
tool for automating secure two-party computations,” in Proceedings of
the 17th ACM conference on Computer and communications security.
ACM, 2010, pp. 451–462.

[11] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. Lagendijk, and
T. Toft, “Privacy-preserving face recognition,” in Privacy Enhancing
Technologies. Springer, 2009, pp. 235–253.

[12] A.-R. Sadeghi, T. Schneider, and I. Wehrenberg, “Efficient privacy-
preserving face recognition,” in Information, Security and Cryptology–
ICISC 2009. Springer, 2010, pp. 229–244.

[13] W. A. Alberto Torres, N. Bhattacharjee, B. Srinivasan, and I. Khalil,
“Privacy-preserving biometrics authentication systems using fully ho-
momorphic encryption,” International Journal of Pervasive Computing
and Communications, vol. 11, no. 2, 2015.

[14] A. K. Jain, S. Prabhakar, L. Hong, and S. Pankanti, “Filterbank-based
fingerprint matching,” Image Processing, IEEE Transactions on, vol. 9,
no. 5, pp. 846–859, 2000.

[15] A. Holzer, M. Franz, S. Katzenbeisser, and H. Veith, “Secure two-party
computations in ansi c,” in Proceedings of the 2012 ACM conference on
Computer and communications security. ACM, 2012, pp. 772–783.

[16] B. Kreuter, A. Shelat, B. Mood, and K. R. Butler, “Pcf: A portable circuit
format for scalable two-party secure computation.” in Usenix Security,
vol. 13, 2013, pp. 321–336.

[17] E. M. Songhori, S. U. Hussain, A.-R. Sadeghi, T. Schneider, and
F. Koushanfar, “Tinygarble: Highly compressed and scalable sequential
garbled circuits,” in IEEE S & P, 2015.

[18] M. Naor and B. Pinkas, “Computationally secure oblivious transfer,”
Journal of Cryptology, vol. 18, no. 1, pp. 1–35, 2005.

[19] A. Yao, “How to generate and exchange secrets,” in Foundations of
Computer Science, 1986., 27th Annual Symposium on. IEEE, 1986,
pp. 162–167.

[20] D. Lee, K. Choi, and J. Kim, “A robust fingerprint matching algorithm
using local alignment,” in Pattern Recognition, 2002. Proceedings. 16th
International Conference on, vol. 3. IEEE, 2002, pp. 803–806.

[21] X. Luo, J. Tian, and Y. Wu, “A minutiae matching algorithm in
fingerprint verification,” in Pattern Recognition, 2000. Proceedings. 15th
International Conference on, vol. 4. IEEE, 2000, pp. 833–836.

[22] A. Jain, L. Hong, and R. Bolle, “On-line fingerprint verification,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 19, no. 4,
pp. 302–314, 1997.

[23] C. I. Watson, M. D. Garris, E. Tabassi, C. L. Wilson, R. M. McCabe,
and S. Janet, “Users guide to nist fingerprint image software 2 (nfis2),”
National Institute of Standards and Technology, 2004.

