
Flexible ASIC: Shared Masking for Multiple Media
Processors

Jennifer L. Wong
Univ. of Calif., Los Angeles

Los Angeles, California

jwong@cs.ucla.edu

Farinaz Kourshanfar
Univ. of Calif., Berkeley

Berkeley, California

farinaz@eecs.berkeley.edu

Miodrag Potkonjak
Univ. of Calif., Los Angeles

Los Angeles, California

miodrag@cs.ucla.edu

ABSTRACT
ASIC provides more than an order of magnitude advantage
in terms of density, speed, and power requirement per gate.
However, economic (cost of masks) and technological (deep
micron manufacturability) trends favor FPGA as an imple-
mentation platform. In order to combine the advantages of
both platforms and alleviate their disadvantages, recently
a number of approaches, such as structured ASIC/regular
fabrics, have been proposed. Our goal is to introduce an
approach that has the same objective, but is orthogonal to
those already proposed. The idea is to implement several
ASIC designs in such a way that they share the datapath,
memory structure, and several bottom layers of intercon-
nect, while each design has only a few unique metal layers.
We identified and addressed two main problems in our quest
to develop a CAD flow for realization of such designs. They
are: (i) the creation of the datapath, and (ii) the identifi-
cation of common and unique interconnects for each design.
Both problems are solved optimally using ILP formulations.
We assembled a design flow platform using two new pro-
grams and the Trimaran and Shade tools. We quantitatively
analyzed the advantages and disadvantages of the approach
using the Mediabench benchmark suite.

Categories and Subject Descriptors: B.5.1 [Design Aids]:
Optimization

General Terms: Design.

Keywords: ASIC, interconnect, optimization.

1. INTRODUCTION
The traditional dilemma for many design teams has been

ASIC or FPGA. FPGAs provide significant advantages over
ASIC in terms of turn-around-time, flexibility, testability
and suitability for debugging. However, for a given technol-
ogy ASIC provides over 12 times higher speed, almost 50
times higher density, and more than 500 times lower power
per gate [18]. Exponential growth of mask cost and a more
demanding manufacturability process with each new gener-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2005,June 13–17, 2005, Anaheim, California, USA.
Copyright 2005 ACM 1-59593-058-2/05/0006 ...$5.00.

ation of deep submicron technology caused two major ram-
ifications on implementation platforms. Specifically, while
in 0.25 micron the Non-Recurring Engineering (NRE) cost
(mask set and probe card) was $100,000, it will approach
$2 million for 65 nm [18]. At the same time printability
and process variation challenges favor regular designs [13].
The first consequence is that regardless of great delay, area,
and ASIC advantages, the number of ASIC designs has to
be consistently decreasing. For example, over the last 15
years, the number of ASIC designs has been reduced 6 times
(from 15,000 to 2,500). ASIC is currently used only for very
large volume designs. If we consider a relatively large half
of million volume, in 65 nm, the NRE cost will add $4 per
design, which is often unacceptable overhead. The second
consequence is the emergence of a quest for new design im-
plementation platforms and design methodologies to develop
solutions that preserve some of the advantages of ASIC while
reducing NRE costs and increasing manufacturability.

A number of implementation platforms aimed to reduce
mask and therefore NRE costs and to bridge the gap between
ASICs and FPGAs have recently been proposed. The new
industrial platform is commonly called structured ASIC or
hybrid-FPGA structures and is pursued by large semicon-
ductor companies, CAD houses, and start-ups [4, 5, 7, 9,
12, 15, 17, 18]. Academic researchers often refer to this im-
plementation platform as regular fabrics and have focused
their efforts mainly on either defining the structure of the
fabric or exploring how the physical design is impacted by
the emerging implementation platforms [2, 6, 7, 8, 11, 13,
14]. Most often the new platform consists of an array of
logic cells built using diffusion and a few bottom metal lay-
ers. Logic cells contain programmable combinatorial logic
and often storage elements. Therefore, the bottom mask
layers are common to all designs that will be executed on
this platform. Note that in addition to logic cells that can
be customized, the interconnect network on the top few lay-
ers is generated using custom masks specifically crafted for
a specific design. Therefore the approach significantly re-
duces the number of required custom masks and preserves
some of the advantages in terms of delay, power, and area of
a standard cell-based ASIC implementation platform. It is
estimated that performances of this platform are inferior to
fully custom ASIC by a factor of 2-4. However, specialized
structure ASIC CAD tools are required.

Although our approach explores exactly the same division
of layers in terms of common and customized, the approach
is complementary to the ones already presented. Note that a
few bottom layers in our case can be either fully customized

����

�� �� �� �� �� �� �� ��

Figure 1: Basic architecture of media applications.

and implemented using cell-based ASIC, or can leverage on
the bottom few layers of a structured ASIC. In the former
case, we preserve all ASIC advantages in terms of area, de-
lay, and power. In the later case, the emphasis is on en-
hanced manufacturability through regularity and reduced
testing and debug costs. Furthermore, we focus on the reg-
ister transfer and behavioral levels for the development of
CAD tools for the effective use of new ASIC implementation
platforms with reduced cost and shared bottom layers.

We identified two main aspects for developing CAD tools
for flexible top layer ASIC implementation platforms. The
first problem is how to select functional units that will ad-
dress the needs of all applications. The second problem
is how to assign interconnect to both the shared and cus-
tomized metal layers. We proved that both problems are
NP-complete and can be optimally solved using integer lin-
ear programming (ILP) formulations. Since the size of the
instances for realistic designs are relatively moderate, the
runtime of the CPLEX ILP solver in all cases was less than
0.1 second.

1.1 Motivational Example
The key idea behind the flexible ASIC approach is to gen-

erate interconnect assignments for different applications in
such a way that all the applications have the same basic
mask layers. The only difference would be the interconnect
configurations for the upper layers. The approach can be
introduced and illustrated using the following example. As-
sume that we have five different application-specific media
processors, namely JPEG encoder, MPEG encoder, GSM
encoder, G.721 encoder and Pegwit encoder. For the sake
of clarity and simplicity, we show a very simplistic view of
these encoder architectures. Assume that the basic archi-
tecture shown in Figure 1 should be used for building all
the encoders and only the interconnect requirements differ.
We have four different functional units denoted by A, B, C,
and D. Each unit has an output with the same name as its
block. There are two inputs for each blocks denoted as A1,
A2, B1, B2, C1, C2, D1, and D2 respectively.

Table 1, shows the interconnect requirements for these five
different media processors. Each row of the table represents
an interconnect between the output of a block to the input of
another block. Each column of the table represents a design.
Assume that the chip has nine layers and requires that each
layer can only have a maximum of two interconnects. If we
directly implement each design, we will need five ASICs each
with nine layers of interconnect, for a total of 45 interconnect
masks.

However, by using the concept of flexible ASIC and an-
alyzing the common interconnects required for all designs,
the interconnect requirements can be organized as in Ta-
ble 2. The leftmost column of Table 2 shows the inputs to
each block. Each column afterward shows the output that

Application
IC JPEG MPEG GSM P.721 Pegwit

AA1 • • • • •
AA2 - - - • •
AB1 • • - - •
AB2 • • • • •
AC1 • • • • •
AD2 - • • - -
BA2 • • • • •
BB1 • • • • •
BC1 • • • - -
BC2 • • • • •
BD1 - - - • •
BD2 - - • • -
CA1 • • - - •
CB1 • • • • •
CB2 • • • • •
CD1 • • • • •
DA1 • • • • •
DB2 • • • • •
DC1 • • • • •
DC2 - - • • -
DD1 • • • • •
DD2 • • • • •

Table 1: Interconnects required for each of the me-
dia processors.

Input Basic JPEG MPEG GSM P.721 Pegwit
A1 A,D C C - - C
A2 B - - - A A
B1 B,C A A - - A
B2 A,C,D - - - - -
C1 A,D B B B - -
C2 B - - B B -
D1 C,D - - - B B
D2 D - A A,B B -

Table 2: The input/output relationship for the en-
coder applications.

enters the corresponding input. The second column shows
the basic architecture interconnection that is the same for
all five different applications. Columns 3 through 6 indicate
the outputs per media application that are the required in-
terconnects with each of the inputs on each row, in addition
to the basic interconnects. Therefore, the first seven layers
are completely dedicated to the 14 interconnects included in
the basic architecture (column 2 of Table 2). The remain-
ing interconnects are assigned to the remaining two layers
in such a way that we have the minimum number of vari-
ants per layer and completely implement each of the media
processors.

We find the following four variants (instantiation for the
interconnects on one layer) for our five encoders: v1: CA1,
AB1, v2: CA1, AB1, v3: BD2, DC2, v4: BD1, AA2.

By looking at the interconnect requirements from Table
2, we see that variants v1 and v2 can be used for realizing
the MPEG and the JPEG decoders. Variants v2 and v3 can
realize the GSM encoder. Variants v3 and v4 can realize
the G.721 encoder, while variants v1 and v4 can realize the
Pegwit encoder. Therefore, the addition of only two layers
to the basic layers can realize the full architecture for all
five encoders. For each architecture the first seven layers
are identical in terms of masks, while the last two layers
are realized by two of the four variants corresponding to
each architecture and are hence different. Therefore, using
flexible ASIC only eleven unique metal layers are necessary
to realize all five media processors.

��������

��	
 ��
�����

�������������

�������
�������

�� � !�����!!���

������ ������

 !�����!!���

�����!��!�

"
#�$ "�%��

����&�'�
&

"()�� *+�&'���$('�
&

, -..�#&/�&'

Figure 2: Global Flow.

In the following section we briefly discuss the related work.
In Section 2 we identify the overall flow of the approach for
realization of multiple applications on a single chip. We
introduce our ILP approach for determining the basic layers
of the chip in Section 3. We formulate the interconnect
assignment problem using integer linear programming (ILP)
for two optimizations: minimal variant layers and minimal
design and manufacturing cost. Before concluding the work
we present the experimental analysis of the technique.

2. DESIGN FLOW
Figure 2 shows the flow of our flexible ASIC approach.

The input to the CAD system is a set of applications speci-
fied using C or VHDL programs. In our experimentation, we
focused on the implementation of large media applications
that have been specified and simulated for their functional-
ity correctness using C programs. Specifically, we considered
all Mediabench applications [10] and the Viterbi convolution
encoder. All programs have been profiled for the identi-
fication of the number of operations and transfers of each
type. Profiling is accomplished through a relatively simple
wrapper around the Trimaran [16] and Shade tools [1]. The
output of the CDFG profiler is the required datapath and
interconnect requirements of each application specified at
the behavioral level. This profile is an input, together with
a library of the available functional units, to a program that
identifies the best units for inclusion in the datapath in such
a way the the likelihood that all timing constraints for all ap-
plications are satisfied and the area of the design minimized.
Note that we do not specifically optimize the memory struc-
ture. In practice we observed that it is sufficient to allocate
memory requirements of the most intensive application for
all others.

The result of the datapath definition module has two com-
ponents. The first is a set of multi-functional units that
satisfy the specified clock cycle time. The second is the
set of required interconnects for each application. The sec-
ond component is the input into the layer identification and
assignment program that minimizes the total number of
unique layers required for all applications. We considered
two variants of the layer identification assignment problem:
(i) where the goal is to solely minimize the number of unique
layers, and (ii) where the layers are identified and assigned
in such a way that the sum of the NRE and manufacturing
cost is minimized. Both the datapath and layer identifi-
cation assignment programs are solved using ILP. For this
purpose we used the CPLEX solver.

3. DATAPATH DEFINITION
In this section, we first formulate the datapath definition

problem and its complexity. We present the ILP formulation
of the problem which can be solved using any ILP solver.

We assume that a set of applications is given. The goal
is to allocate a datapath for these applications using the
available library of functional units. The library contains
specifications for a number of unit types. The goal is to find
a mapping which minimizes the total area used by the logical
level definition (actual functional units) of our applications.
The problem can be more formally stated as follows. Note
that, we define the problem instance in such a way that we
can directly use it as the input to our ILP formulation in
the next subsection.

Problem: Datapath Definition Problem
Instance:
• A set of applications MPk, k = 1, ..., Nk.
• A number of operations OPj, j = 1, ..., Nj .
• A set of required operations ROkj, that define if the oper-
ation OPj is required by the application MPk, j = 1, ..., Nj,
k = 1, ..., Nk:

ROkj =

{
1, if operation OPj is required by MPk,
0, otherwise.

• The architectural profiles Pkj, that defines the number
of operations of type OPj in the applications MPk, j =
1, ..., Nj, k = 1, ..., Nk.
• A number of for functional unit types (families) TFUi,
i = 1, 2,, Ni.
• A library with elements Lij such that each type of func-
tional units TFUi can perform the operations OPj, i =
1, 2,, Ni, j = 1, ..., Nj :

Lij =

{
1, if TFUi can perform operations of type OPj ,
0, otherwise.

• An actual set of functional units FUa, a = 1, ..., Na;
• An area cost Ai, for each functional unit type TFUi,
i = 1, 2,, Ni.
• A throughput constraint Tk corresponding to each applica-
tion MPk, k = 1, ..., Nk.
Question: Is there a subset of functional units FUa, a =
1, ..., Na, such that the subset has the cardinality Nsub and
all applications are realizable (functional units and trans-
fers) and the total cost is minimized?

3.1 NP-Completeness
The datapath definition problem is NP-complete. It is a

special case of the minimum cover problem. The minimum
cover problem is formulated as following in Garey-Johnson
format [3].

Problem: [SP5] Minimum cover
Instance: Collection C of subsets of a finite set S, positive
integer K ≤ |C|.
Question: Does C contain a cover for S of size K or less,
i.e., a subset C′ ⊆ C with |C′| ≤ K such that every element
of S belongs to at least one member of C′?

We prove that the minimum cover problem is a special
case of the datapath definition problem. Each element in
the set cover problem corresponds to a type of operation in
the specification of the designs. Each collection corresponds
to a functional unit in the library that can execute a set of
operations that correspond to the elements of the set cover
problem. The goal is to select at most K collections, or

functional units, which implement all the operations. Note
that the throughput constraint on the functional units is not
enforced in the case of the minimum cover problem.

3.2 ILP Formulation of the Problem
In order to solve this problem using ILP, a number of

variables are defined. The first set of variables are denoted
by xai and relate the actual functional units FUa to the type
of functional units TFUi, a = 1, ..., Na, i = 1, 2,, Ni:

xai =

{
1, if functional units FUa is of type TFUi,
0, otherwise.

(1)

The second set of variables are denoted by tkja and are
defined for each application MPk, and determine the num-
ber of operations of type OPj assigned to the functional unit
FUa, , k = 1, ..., Nk, j = 1, ..., Nj , a = 1, ..., Na.

The objective function is to minimize the total cost of
the implementation area required for implementation of the
applications (actual functional units):

min
∑

i

∑
a

Aixai

We introduce four sets of constraints for the problem. The
first set of constraints (C1), ensures that each functional unit
FUa is only of one specific type TFUi. The second set of
constraints (C2), enforces each application to be realizable
by the selected functional units. Thus, for each application
MPk, all operations of type OPj , must be implemented by
at least one selected functional unit FUa:

C1 : ∀a,
∑

i

xai = 1

C2 : ∀k, ∀j,
∑

a

∑
i

OkjLijxai ≥ 1

Not only must each of the applications be realizable, but
the throughput constraint for each application should be
met. The third and fourth sets of constraints enforce the
throughput constraints for each application and each type
of operation. The third set of constraints (C3) ensures that
all instances of the operation are assigned to a selected func-
tional unit which can perform the operation. C3 consists of
two notions, the first of which specifies if the selected func-
tional unit FUa of type TFUi can perform the operation
OPj . If so, then this functional unit can be assigned the
operation of type OPj . Secondly, the sum of all operations
of type TFUj assigned to all selected functional units must
equal the total number of operations required for MPk. We
implement these requirements using the logical AND (∧)
function. AND is implemented in terms of ILP constraints
by introducing a new variable and adding three constraints
for each AND operation. Specifically, a ∧ b = c is imple-
mented in the following way where c is a binary variable.

a + b− c ≤ 1 a− c ≥ 0 b− c ≥ 0

The fourth and last set of constraints (C4), ensures that all
the assigned operations to an actual functional unit for a
given application do not exceed the throughput limitations
of that application. For each application MPk, and for each
selected functional unit FUa, for any type of operation OPj

that the functional unit of a certain type can perform, the
sum must be less than the throughput specified for the op-

eration:

C3 : ∀Okj = 1,
∑

a

∑
i

(Lijxai ∧ tkja) = Pkj

C4 : ∀k, a,
∑

j

∑
i

(Lijxai ∧ tkja) ≤ Tk

4. INTERCONNECT ASSIGNMENT
Once the datapath for each of the processors is defined

(i.e. the solution from the datapath definition problem),
the next step is to determine the interconnect assignments
for each of the processors. In this section, we first formulate
the interconnect assignment problem and the complexity of
the problem. Next, we present the ILP formulation of the
problem. Finally, we introduce a variant on the original
problem formulation which addresses the minimization of
the total implementation cost of all layers.

Assume the interconnect specifications for a number of
application-specific media processors MP s is known. In ad-
dition, the specific interconnects for each of the media pro-
cessors are given. The fabrication process has a constraint
on the number of interconnects per layer. The goal is to as-
sign interconnects to the different layers for each application
in such a way that the maximum number of layers can be
shared between the applications, only a few layers vary for
different applications, and the constraints on the number of
interconnects on one layer are satisfied. More formally the
problem can defined as follows.

Problem: Interconnect Assignment Problem
Instance: Application-specific media processors (MPk)
with specified interconnects, number of layers (S), number
of interconnects per layer (M), number of allowable varia-
tions for each layer (R).
Question: Is there an assignment of interconnects to each
layer s.t. the total number of created variations are for all
layers are minimal, and each MPk is created?

4.1 NP-Completeness
The interconnect assignment problem is NP-complete. It

is a special case of the Largest Common Subgraph problem.
The Largest Common Subgraph problem is formulated in
the Garey-Johnson format [3] as:

Problem: [GT49] Largest Common Subgraph
Instance: Graph G = (V1, E1), H = (V2, E2), positive
integer K.
Question: Do there exist subsets E′

1 ⊆ E1 and E′
2 ⊆ E2

with |E′
1| = |E′

2| ≥ K such that the two subgraphs G′ =
(V1, E

′
1) and H ′ = (V2, E

′
2) are isomorphic?

Note that the interconnect requirements for each application
form a graph, where the vertices of the graphs are the func-
tional blocks of the MPs and the edges are the interconnects
between the blocks. When we have only two applications,
the selected subset of edges is the set of interconnects which
are shared by the media processors. In this case the goal is
to find the maximal set.

4.2 ILP Formulation
We now show the notations and the variables that are

used for formulating the interconnect assignment problem in

ILP. We assume that the total number of layers is specified
s = {1, . . . , S}, as well as the maximum number of variants
per layer r = {1, . . . , R}. The maximum number of inter-
connects on one layer is denoted by a constant M and is an
input to the problem. The three dimensional matrix Wijk

is an input to the problem and indicates the data flow edges
(interconnects) for each application k. More specifically,

Wijk =

{
1, if the edge (i,j) exist in application k,
0, otherwise.

The solution to the problem finds different variants (instan-
tiations) for each of the layers. The four dimensional vari-
able xijrs is used to denote the interconnect assignment for
each layer in each of the variants. More formally,

xijrs =

{
1, if the edge (i,j) exist in variant r on layer s,
0, otherwise.

Additionally, we define a three dimensional variable, ukrs,
that links each application to the layers and the variant on
that layer on which its interconnect requirements are imple-
mented.

ukrs =

{
1, if the application k uses variant r on layer s,
0, otherwise.

Lastly, we define a variable to denote if a possible variant
is used on each layer. The two dimensional variable yrs is
such a variable and is defined below.

yrs =

{
1, if variant r is used on layer s,
0, otherwise.

Note that the variables xijrs, ukrs, and yrs are not indepen-
dent of each other and we will define a set of constraints in
the problem formulation that relates these three variables.

The objective function of the problem is to minimize the
total number of variants on all of the chip layers. This ob-
jective function can be formally written as:

min
∑

r

∑
s

yrs

There are five constraints to the formulation which relate
the above variables together and specify the limitations on
the variables. The first constraint of the problem (C5) en-
sures that each of the required interconnects for all the ap-
plications are implemented on at least one variant on any of
the layers of the chip. This ensure that each of the media
applications can be realized on the chip. More formally,

C5 : ∀k ∈ [1, K],∀ (i,j) Wijk ≤
∑

r

∑
s

xijrs

C6 : ∀s,∀r,
∑

i

∑
j

xijrs ≤ M

C7 : ∀k ∈ [1, K], ∀ layers s,
∑

r

ukrs ≤ 1

The second constraint of the problem (C6) is to ensure that
each layer has at most the maximum number of M intercon-
nects at each layer, i.e., When realizing each of the appli-
cations the required interconnects must all be implemented
on only one variant per layer. To ensure this, the third
constraint (C7) specifies that each application can only be
assigned at most one variant at each layer. In other words,
The two final constraints (C8 and C9) relate all the variables
to each other. In particular, the constraint C8 determines

the relationship between the overall used layers, yrs, and
the layers used by each specific application, ukrs. The re-
lationship is straightforward from the definition of the two
variables. If an application k uses variant r on layer s (ie.
ukrs = 1), then the variant r on layer s must be used. This
relationship is shown as follows.

C8 : ∀k ∈ [1, K] yrs ≥ ukrs

C9 : ∀i, ∀j ukrs ≥ Wijkxijrs

Constraint C9 specifies the relationship between the inter-
connects on each variant of each layer, xijrs, and the variant
layers which are used for each application, ukrs. This rela-
tionship is also directly concluded from the definitions. If
the edge (i,j) exists in variant r on layer s, and also the edge
(i,j) is required for realization of application k, then xijrs

and Wijk are one. In such a situation, the application k can
use the variant r on layer s, i.e. ukrs = 1.

4.3 Interconnect Assignment for Cost
In this Subsection the focus of the optimization switches

from minimizing the number of total variant layers to min-
imizing the monetary cost for implementation of the layers,
both design and manufacturing.

We assume that the cost of designing each of the layers is
known along with the amount of each media processor to be
manufactured. Considering these new inputs the problem
can be formally defined as follows.

Problem: Cost Minimization with Interconnect Assign-
ment
Instance: Application-specific media processors (MPk)
with specified interconnects, number of layers (S), number
of interconnects per layer (M), number of allowable varia-
tions for each layer (R), cost for design for each layer (D),
volume of manufacturing each media processors (Vk).
Question: Is there an assignment of interconnects to each
layer s.t. the total cost of design and manufacturing all de-
signs is minimal and each MPk is created?

In order to address this problem which is an extension
of the interconnect assignment problem, we reformulate the
objective function to focus on the total cost rather than the
number of layers. The total cost is the cost to design each
of the necessary layers, plus for each layer the volume of
manufacturing necessary for each of the media processors.
Therefore, using the same formulation variables from the
interconnect assignment problem we formulate the objective
function as:

min D ∗ (
∑

r

∑
s

yrs) +
∑

k

(Vk ∗ (
∑

r

∑
s

ukrs))

All constraints of the problem are identical to the intercon-
nect assignment problem.

5. EXPERIMENTAL RESULTS
Flexible ASIC is particularly well suited for computational

intensive applications such as media processors. Therefore,
for evaluation purposes we used 21 applications from the Me-
diabench benchmark suite [10] and the Viterbi decoder that
is widely used in both wireless and optical communications.
The Viterbi decoder was obtained from the LSI Logic cor-
poration and is denoted in Table 3 by V. The Mediabench

designs # of designs # of initial # of custom # of final reduction initial final cost
layers layers layers cost ($M) cost ($M) reduct

A,B,C,D,V 5 49 2 14 71.43% 9.9 6.4 35.35%
G,H,I,J,V 5 49 2 15 69.39% 9.9 6.5 34.34%
A,B,L,M,N 5 47 2 16 65.96% 9.7 6.6 31.96%
A,B,C,D,I,J 6 60 2 17 71.67% 11 7.7 30.00%
G,H,I,J,M,N 6 58 2 17 70.69% 10.8 7.7 28.70%
O,P,Q,R,S,T 6 52 3 15 71.15% 10.2 7.5 26.47%

A,B,C,D,G,H,I,J 8 80 2 16 80.00% 16 9.6 40.00%
A,B,E,F,G,H,I,J 8 80 3 15 81.25% 16 9.5 40.63%

A,B,G,H,I,J,L,M,N,V 10 96 3 20 79.17% 19.6 12 38.78%
A,B,C,D,G,H,I,J,K,L 10 98 3 18 81.63% 19.8 11.8 40.40%

Table 3: Analysis of the new flexible ASCI scheme in terms of technological complexity (number of layers)
and estimated cost for the case where on manufacturing of each design $1M is spent per design.

designs have been denoted using the following notation :
Cjpeg (A), Djpeg (B), MPEG2encode (C), MPEG2decode
(D), toast (E), untoast (F), rawcaudio (G), rawdaudio (H),
G.721 encode (I), G.721 decode (J), PGPencode (K), PG-
Pdecode (L), PEGWITencode (M), PEGWITdecode (N),
Ghostscript (O), mipmap (P), osdemo (Q), texgen (R), rasta
(S), EPIC (T), and unEPIC (U). We organized all the de-
signs into ten groups by similarities of their applications
and similarity in their type of datapath and interconnect
requirements. The smallest group consisted of five designs
and the largest contained ten designs. For all designs we
assumed the total number of available layers was ten and
that each metal layer can be used to implement at most five
global interconnect between different functional units. In all
examples, the datapath consisted of eight units.

Table 3 shows characteristics of the designs when imple-
mented using the traditional ASIC where each design is im-
plemented separately and after application of the new flex-
ible ASIC design methodology and platform. The first col-
umn indicates which designs were considered for simulta-
neous implementation on a single platform using the flexi-
ble ASIC methodology. The second column shows the total
number of layers required for all design when the traditional
ASIC approach is used. The fourth column indicates the
number of customized layers used by the flexible ASIC ap-
proach. The next two columns show the total number of
layers required by the flexible ASIC approach and the total
reduction in percentage of layers required for implementa-
tion. The last three columns are used to estimate the eco-
nomic advantage of flexible ASIC under the assumption that
the cost of a layer is $100,000 and that the manufacturing
cost for each type of design in $1M. Note that the reduc-
tion in number of layers is equivalent to the reduction in
NRE cost. The average NRE cost was reduced by 74% and
the average overall cost reduction by 34%. Note that in all
cases, the cost reduction increases as the number of designs
targeted to share the common bottom layers increases.

6. CONCLUSION
In order to reduce NRE cost and enhance the applica-

bility of ASIC implementation platforms, we introduced a
common bottom - customized top layers flexible ASIC ap-
proach. The approach provides a new alternative between
FPGA and ASIC implementation platforms: it essentially
maintains ASIC advantages in terms of gate speed, density,
and power, while reducing the NRE cost. We identified the
two key phases for CAD tools that target the new ASIC

platform and solved associated optimization problems opti-
mally using the CPLEX ILP solver. The experimentation
indicates that the new platform can be used both to reduce
NRE and overall implementation costs.

7. REFERENCES
[1] R. F. Cmelik and D. Keppel. Shade: A fast instruction-set

simulator for execution profiling. Technical Report SMLI
93-12, UWCSE 93-06-06, 1993.

[2] J. Cong, Y. Fan, X. Yang, and Z. Zhang. Architecture and
synthesis for multi-cycle communication. In International
Symposium on Physical Design, pages 190–196, 2003.

[3] M. Garey and D. Johnson. Computers and Intractability.
W.H. Freeman, 1979.

[4] http://www.fma.fujitsu.com/accel/main01.asp.

[5] http://www.lsilogic.com/products/rapidchip platform
asic/index.html.

[6] B. Hu, H. Jiang, Q. Liu, and M. Marek-Sadowska. Synthesis
and placement flow for gain-based programmable regular
fabrics. In International Symposium on Physical Design,
pages 197–203, 2003.

[7] A. Kahng, I. Bolsens, J. Cohn, B. Gupta, C. Hamlin,
Z. Orbach, and L. Pileggi. What is the next implementation
fabric? IEEE Design and Test of computers, 20(6):86–95,
Nov. 2003.

[8] V. Kheterpal, A. J. Strojwas, and L. Pileggi. Routing
architecture exploration for regular fabrics. In Conference on
Design Automation, pages 204–207, 2004.

[9] D. E. Lackey, P. S. Zuchowski, and J. Koehl. Designing
mega-ASICs in nanogate technologies. In Conference on
Design Automation, pages 770–775, 2003.

[10] C. Lee, W. Mangione-Smith, and M. Potkonjak. Mediabench:
A tool for evaluating multimedia and communication systems.
In MICRO-30 Conference, pages 330–335, Nov. 1997.

[11] F. Mo and R. K. Brayton. Fishbone: a block-level placement
and routing scheme. In International Symposium on Physical
Design, pages 204–209, 2003.

[12] T. Okamoto, T. Kimoto, and N. Maeda. Design methodology
and tools for NEC electronics’ structured ASIC ISSP. In
International Symposium on Physical Design, pages 90–96,
2004.

[13] L. Pileggi, et al. Exploring regular fabrics to optimize the
performance-cost trade-off. In Conference on Design
Automation, pages 782–787, 2003.

[14] Y. Ran and M. Marek-Sadowska. On designing
via-configurable cell blocks for regular fabrics. In Conference
on Design Automation, pages 198–203, 2004.

[15] D. D. Sherlekar. Design considerations for regular fabrics. In
International Symposium on Physical Design, pages 97–102,
2004.

[16] Trimaran. http://www.trimaran.org/.

[17] K. Wu and Y. Tsai. Structured ASIC, evolution or revolution?
In International Symposium on Physical Design, pages
103–106, 2004.

[18] P. S. Zuchowski, C. B. Reynolds, R. J. Grupp, S. G. Davis,
B. Cremen, and B. Troxel. A hybrid ASIC and FPGA
architecture. In International Conference on Computer-aided
Design, pages 187–194, 2002.

