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Abstract

We introduce a novel methodology for determining the difficof modeling a given data set. The method utilizes forrtiata
of modeling as an optimization problem instance that césisiEan objective function and a set of constraints. The gntigs of
the data set that could affect the quality of optimizatioa eategorized. In large optimization problems with muétipkoperties
that contribute to the solution quality, it is practicalippossible to analytically study the effect of each propettynumber of
metrics for evaluating the effectiveness of the optimaaton each data set are proposed. Using the well known Ptaakdt
Burmann fast simulation methodology, for each metric, thpdct of the categorized properties of the data are detedrfior the
specified optimization method. A new approach for combirtimg impacts resulting from different properties on varioustrics
is described. The method is illustrated on distance measmedata used for estimating the locations of wireless sigui@d-hoc
networks.

I. INTRODUCTION

Years of continuous research in statistical modeling artanigation has produced a multitude of readily availablethods
and tools that could be employed for building models for a&gidata set [1]. Often times, a new statistical modeling ogkth
is theoretically analyzed for meeting an optimality ciidennder certain assumptions and/or for its runtime conipledany
modeling practices today concern a large body of data the$ dot conform with typical assumptions needed to analigtica
declare an optimality criteria. In such scenarios, the ringemethod is usually evaluated by how it performs on sets of
real or simulated data. For example, some statistics ofdkelting prediction error and/or a defined criterion (eBayesian
information criterion (BIC)) is used for experimental avafion of the method on the data. A relevant question to angve
if indeed modeling the pertinent data set requires intrtdo®f a new modeling method, or the data could have beenggist
well addressed by other known methods. Aside from the thieatgroperties, a useful new methodology is the one that ca
build models for difficult-to-characterize data that isdh&w comprehend by other tools and methods.

Addressing the problem is important since it would introgladteria for quantifying the difficulty of modeling a givetata
set. This would provide impetus for inventing newer modglinethods and tools that can address the challenging aspect o
the difficult-to-characterize data. Simultaneously, fatimn of new tools would depend upon finding truly challemggohata
sets that need to be modeled, as opposed to building new smtid#l have a limited practical usage. Formation of sets of
challenging data would also build a foundation for comparimmong the various modeling methods and algorithms that
attempt to model the data set. The problem of finding diffitodtharacterize data is complicated by variations in proes
of the underlying data sets collected by different sour@éss includes difference in size, format, hidden covagasnd the
form of noise present in the collected data. It is not easyn finique metrics that could be used for comparison of differ
modeling methods.

To compare various modeling methods that address the sa®s® @l problems, the current practice is to use common data.
The common data is typically publicly available to downlcatd use by the researchers. Examples of public database for
such data includes [2], [3]. Sensitivity of modeling errorather discrepancy metrics to the underlying noise in dasbeen
widely studied for a number of modeling methods [4] [5]. Aldbe consistency of estimators based on a number of strong
assumptions on the distribution of the data has been pur&jetiowever, no generic method or tool for determining the
difficulty in modeling a data set free of imposing strong a&sptions — such as Normality or other closed form distribnsio
of noise — is available. Note that the runtime complexity afnadeling method is an orthogonal concept. The complexity
measures the worst-case computational time for the algoriised for finding the model. Analyzing the worst-case mati
complexity does not help in understanding the complexitgludracterizing a specific data set.

Finding an appropriate model for a data set is usually actishgnl by fitting model parameters on the data such that a
measure of accuracy is optimized, e.g., minimizing the me&grare error. To analyze the model's performance on the data
we study the modeling optimization problem that consistarobbjective function (OF) and a number of constraints. Tia d
set is considered as the input to the optimization problem.iftfoduce a number of metrics that measure the complexity
of the optimization problem based on the OF properties amdtcaints. The challenge in most optimization problemsés t
existence of nonlinearities that make the solution spaegsey causing bumpiness and multiple local minimums. Weqwe
a number of measures for the smoothness of the OF and constspiace that estimate the feasibility of reaching thealob
minimum.

To enable studying the effectiveness of the optimizatiomalata set, one should characterize the properties of thiegrer
data set. The properties are specific to each data set angedzibm. In this paper, we focus on the problem of modelirgg th



location of nodes in a wireless network by using erroneoutuaiuwlistance measurements between a number of node pairs.
However, we emphasize that our method is generic and canduefas determining the challenge in addressing any data set
that includes forming an optimization problem. The locatastimation problem is selected for four reasons. Firss, & very

well addressed problem in the literature and there are abr@thods that are developed for this problem [7] [8] [9]][[XL].
Second, there are a number of publicly available data sethéomeasured distance data in the networks [2] [12] [13jcdTh

the nonlinear relationship between noise in measuremextésahd location of nodes makes the modeling problem extyeme
challenging. Fourth, localization problem is an NP-corteleroblem, i.e., in the worst case, there is no algorithnt taa
solve it in polynomial time [14] [7].

We characterize a number of properties of the measuremeatsga that could affect the quality of location estimation.
Studying the interaction between the identified data ptigseand optimization metrics requires long simulationd analyses.

We use the well-known Plackett and Burmann [15] simulatioethadology to rapidly study the complex interactions of
properties. A new approach for combining the impacts remplfrom different properties of data on various optimiati
metrics is described. The sensitivity of optimization wilspect to the various parameter ranks is presented.

To the best of our knowledge, this is the first work that systiéeally studies the impact of the data set on the optinorati
problem employed for building statistical models. Most bé tprevious works are devoted to modeling and analysis of the
worst case complexity. The results of our analyses coulditeetty used for constructing benchmarks for the probletne T
proposed work aims at creating a unified framework based aindata that can help evaluation and comparison of desperate
efforts that address the same problem.

The remainder of the paper is organized a follows. In the sextion, location estimation problem and our notations are
formally defined. In Section Ill, we devise a number of metribat are used for OF evaluation. The simulation methodgolog
is described in Section IV. In Section V, we illustrate how tesults of different metrics can be combined. We have egpli
the derived method on the measurements from a real netwdBedtion VI. We conclude in Section VII.

Il. PRELIMINARIES

In this section, we present the formal definition of the peofl We also describe the notations that are used througheut t
paper.
L ocation estimation problem: Given a set ofV nodes denoted by = {v;,v,...vx} in RY (d = 2, 3). For a given subset of
node pairs denoted by C V x V, mutual distance of nodes are measuied, for all (v, v;) € E, I(vi,v;) = d(vs, v;) + €5
is known; d(v;,v;) is the Euclidean distance between the nodeandv;; ¢; ; is the distance measurement error. Moreover,
there is a subset witl/(> 2) nodes denoted bys = {v1,...vn}, Vs C V such that the nodes iz have their exact
location information (coordinates). The nodes in thelgetare called thébeaconnodes.

Question: find the location of all possible nodes.

In this paper, we focus on two-dimensional networks. BExitant three-dimensional networks is straightforward. iimates
of the nodev; are denoted byz;, y;).

The location estimation problem can be formulated as ampdtion problem. The goal is to find the coordinates of
K = N — M non-beacon nodes such that the discrepancy (error) betiheeneasured distance data and the nodes’ distances
estimated from the final coordinates is minimized. In otherds,

Fr(@yin, yarsn, @arsz, Ynrsa, - on9n) = Lleg,,) 1)
(vi,vj)EE

€viw; = (v, 05) — \/(Iz‘ — ;)% + (i — y5)?

WhereL : R — RT is a function that is typically a metric (measure) of errBf, : R2!* — R* is known as objective
function (OF) of the optimization problem.

Note that the OF of the location estimation problem is notessarily a linear or convex function. There are a number of
fast and efficient tools that are developed for linear andsewprogramming. However, there is no oracle algorithm tzat
solve all optimization problems. To find the minimum of a rina&r problem like location estimation, there are a numifer o
heuristic methods that may be employed. The nonlinear systvers have a tendency to get trapped in a local minimum
and do not necessarily lead to the global minimum. Althoutdre are a variety of minimization algorithms, most of them
are common in one subcomponent that starts from an initiedt @md follow the steepest decent to reach the minimum. The
algorithms differ in how they choose the starting point, htwey select the direction in the search space, and how thag av
local (non-global) minima. Thus, the shape of the OF arotsedgiobal minimum is an important factor in finding the sajuti
Data set: The measurement data used in this problem consists of nezhdistances between a number of static nodes in the
plane. Measurements are noisy; there are multiple measmtsrfor each distance. The true location of the nodes is know
and will be known as the ground truth. As explained in Sectiowe sample the data set to obtain instances with specific
properties.

Parameters: We will define a number of parameters that can be extractad fhe data set. The sensitivity of the location
estimation to the variations in each parameter will be sdi



We study the effect of different parameters in the locatistmgation problem and identify the hard instances of measent
data. Ten parameters are studied:

o P, — Number of node¢N): the total number of nodes in the network.

o P, — Number of beacon&B): the number of beacon nodes with known locations.

« P; — Mean squared errofe2): mean squared error of distance measurements.

« P, — Maximum allowed squared errgqiMAX 2 ): the maximum squared error that can possibly exist in degtamea-
surements.

o P; — Percentage of large error$PEREg): percentage of squared distance measurement noisesréhigher than a
specific value3.

« P; —Mean degre€D): mean degree of the nodes in the network. Degree of a npiedefine as number of nodes that
know their mutual distance to;.

e P; — Minimum length(MINL): possible minimum length of the measured distancesMeen nodes in the network.

o P3 — Maximum lengtfMAXL): possible maximum length of the measured distancetsveen nodes in the network.

« Py —Mean length(l): mean length of the measured distances between nodes inetherk.

e Pip — Minimum degre€MIND): a lower bound on the possible minimum degree of thdewin the network.

To study the effect of the parameters, we construct a vadgetyetwork instances with different properties. The netsor
are constructed by selecting subsets of an implementecrietiWaving specific values for parameters, we use Integeedr
Programming (ILP) to extract each subset such that it meetsified properties. To do so, we model parameter constramt
linear equalities and inequalities. Some parameters ssitheamean squared erre?, can be easily stated by linear equalities
and inequalities. But some parameters such as the mearedefgtiee nodesD, need a mapping to be stated in linear terms.
The description of the exact procedure of modeling by linsarstraints is beyond the scop of this paper [13].

IIl. METRICS

In this section, we introduce metrics for error and OF that ased for evaluating the importance of different pararseter
for location estimation. Three error metrics and four OF nastare presented. Thus, a total of twelve combined me#ies
used to evaluate the importance of parameters.

A. Error Metrics

The three error metrics studied in this paper dre; Lo, and the maximum likelihood (ML)L; and L, are the common
error norms in thel,, family defined as:

Lp(v,wn €E)=( Y lew,w /)P if 1<p<oc.
(Un,7vnz)€E

To find the error metric corresponding to ML, we need to moHelroise in distance measurements. To model the noise, the
probability density function (PDF) of errorg,,, for the distance measurements should be approximatefer&it methods are
developed to approximate PDF of noigg, [13]. We have used kernel fitting that is a simple and known RIPproximation
method [1]. To have the maximum likelihood estimation foe thodes’ locations, we find the nodes’ coordinates such that
they maximize

H fm(€v,,0m) = €Xp{ Z In(fm(€vn,vm))} (2)
(U71;U7n)eE (Un,7vm)€E
or equivalently minimize
Z —In(fm(€vn,0.m))- 3)
('Un;Un'L)EE

Note that we assume noise in distance measurements aresivdbgly identically distributed. Following the same riotas
as Equation 1 for Equation 3, for the ML estimation we consitie following error metric:

LI\IL(evn,vm) = - ln(fm(evn,vm))- (4)

B. Objective Function (OF) Metrics

We describe metrics that are used for evaluating OFs. Theametre introduced based on the properties of OF that are
effective in optimization. These metrics are such that th&sign larger values to the more difficult-to-optimize ARgefining
the OF metrics, we assume that there is a fixed instance ofidocastimation data. Thus, for a fixed error metric, the OF
would be fixed. Metrics of OF are denoted By : C — R+ where( is the functional space that contains all OFs.
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Fig. 1. Metrics and objective function (OF).

1) Drifting of Objective Function (OF) :Since there is noise in distance measurements, true locatithe nodes is often
not the global minimum of the OF. Location of the OF’s globahimum is a measure of the goodness of the OF. Figure 1
illustrates the effect of noise on the OF. For simplicity eégentation, a one-dimensional OF is shown. In this figurds
the correct nodes’ location. However, the global minimunitef OF is drifted top,,, because of the noise. We consider the
distance betweep. andp,,, as an OF metric and denote it loyifting.

To find the drifting distance, we start from the true locasi@s the initial point. Next, the steepest descent direcifathe
OF is followed until a local minimum is reached. The Euclidefistance between the true locations and this local minimum
guantifies the drifting metric (denoted kiy;) for the pertinent OF.

2) Nearest Local Minimum Having a humber of local minimums around the global minimuman OF may cause the
optimization algorithm to get trapped in one of the non-gldbcal minimums. It is challenging to minimize such an ORcsi
the global minimum is hard to reach. Figure 1 illustratesghenomena. The OF has multiple local minimums at pgipts,
pm1 and so on. The steepest decent method leads to the globahummif and only if we start from a point betweer,,
andp,,2. Hence, having a small distance betwegn andp,,» would complicate the selection of the initial starting goin

We introduce a method to measure the distance of the truéidaci@om the local minimums around the global minimum.
Because of curse of dimensionality, it is not possible to filtdhe local minimums around the global minimum. We randpoml
sample the OF in multiple directions. The nearest local mimh is computed for each randomly selected direction. We
statistically find the distance to the nearest local minintiyrusing multiple samples.

AssumeF : R?2X — Rt is the OF. A random direction ilR?¥ is a vector in this space. Let us denote it by R2¥.
First, we define a new functioh: R* — R™" such thath(t) = F(p. + tv) wherep, is a vector containing the true locations
of nodes. Second, we find the local minimum/ofvith the smallest positiveé and denote it by;. We repeat this procedure
for T times and find alt;’s. T" is the number of samples. Finally, since it is expected thatdefined metric has a larger value
for more difficult-to-optimize OF, we define the nearest laténimum metric to be

T -1
My(F) = <%Zt> : (5)

3) Measuring the Slope of OF Around the Solutioffhe slope of OFj.e., the norm of OF’s gradient, around the global
minimum is a very important parameter in the convergence aathe optimization algorithm. OFs with a small slope ambun
the true location converge to the global minimum very slowly

Thus, measuring the slope of the OF around the global minimambe used to quantify the goodness of OF. Again, we
measure slope of the OF in multiple random directions arahedtrue locations, and statistically compute this met@€s
with sharp slopes around the global minimum are easier tongm. This can be seen in Figure 2 where the right side of
the global minimump,,,, has a sharp slope. If the initial point of steepest desclgutrithm is betweerp,,, and p,,., it



converges to the global minimum very fast. However, on tfieside of global minimump,,,, there is a gradual slope. Thus,
the steepest descent algorithm would converge very slowlthe left side. We define the true locations’ slope metric as

T —1
M3(F) = <% ;slope in i-th random directio)v . (6)
Note that the slope of the i-th random directiof, is measured at,,,, + ov; whereo is a small number and is a user’s

defined criterion.

4) Depth of the Non-Global Local MinimaOptimization problems that have an OF with deep local mimmawaround
the global minimum are difficult to solve. A number of heudsbptimization methods take advantage of the shallow local
minimums to avoid non-global local minimums, e.g., simethtinnealing [16]. In figure 2, avoiding the local minimunpat
is much easier than local minimum gg.

We define the third metric for quantifying the goodness of &dd the data, as the depth of the non-global local minimums.
We randomly select” local minimums around the true locations. Assuming thatis the OF value at the randomly selected
local minimums, define

1 & o
My(F) = <T Zmz> - (7)
i1

IV. SIMULATION METHODOLOGY

To find the effect of each parameter, we study all combinatminparameters. Assume each parameter has just two values.
If we havek parameters then we have to stuzfy combinations that is computationally intractable. Indtese use Plackett
and Burman (PB) [15] fast simulation methodology that is eyweell known method for reducing the number of simulations.
Number of simulation in PB is proportional to the number ofgraeters.

In PB design, two values are assigned to each parameter:naahwalue and an extreme value. The normal value is the
typical value of the parameter while the extreme value isuvéigie that is outside the typical range of the parameter. The
extreme value often makes the problem either harder orres®olve. A number of experiments with normal and extreme
values of parameters are conducted.

Experiments are arranged based on a given matrix denotelegesign matrix Design matrix hasg columns § is the
number of parameters) androws wheres is the number of experiments the should be set up as follotws.elements of the
design matrix are eithdy or 1. We set up an experiment for each row. Values of the paramdtgrend on the elements on
the row: 0O indicates that the normal value of the parameteséd and 1 indicates that the extreme value of the paranseter i
used in the experiment corresponding to the row.

Assume that we have selected an error meffic, and an objective function metrid/;. The OF itself denoted by,
would be fixed. For each row of the design matrix,we setup an experiment based on the elements of that row aadure
the goodness of the objective functidd;(F7,) and save it in another array element denoted-py,. The corresponding
values are summed up for computing the importance factrdfifeach parameter. For each paramdigrwe define

S
IFrij=| Z Q7. | (8)
h=1

wheres is the number of experiments (number of rows in the desigmim)aand«;, . is 1 if the extreme value of the parameter
P, is used in théi-th experiment; otherwisey;, , is —1. The absolute value of IF is used to evaluate the effect df pacameter.
The largest value indicates the most important parameteri-th error metric and-th OF metric, Ik ; ; > IF, ; ; means that
the parameteP; is more important thawP,. Thus, for each error metrid,;, and for each objective function metrig/;, we
can rank parameters based on their effect on the estimatatidn. This ranking is denoted b, ;.

More precise result can be obtained by using the foldoveigdesatrix [17]. In the foldover design matrix, all rows ofeth
single design are repeated after its last row but Os and lexafeanged in the repeated rows.

V. COMBINING DIFFERENT RANKS

In this section, we explain how to combine the rankings of gheameters under study to obtain a global order for them.
Using the ranking method in the previous section, we woulekeHdifferent rankings for various error metrics and OF nestri
Since there are three error metrics and four OF metricsetiveuld be twelve different importance ranking lists of paegers;
each parameter may have a different rank in each ranking list

Each rank is obtained based on a specific property of the @atiion problem. As it is explained in Section lllI, for each
error and OF metric, the parameters are ranked based on fhartance factor obtained from PB-design. IFs with large
discrepancies lead to a stronger ranking compared to IFs smitall discrepancies.



Parameter Ns | Bs | € MAX.2 [ PERz | Ds | MINLs [ MAXLs | Ts MIND g
Normal Value | 55 | 12 | 10 (n?) | 200 (mz) 50 10 | 5(@m) 40 (m) 20 (m) | 4
Extreme Value| 80 | 3 50 (m2) | 500 m2) | 20 6 10 (m) | 60 (m) 30 @m) | 3

TABLE |
NORMAL AND EXTREME VALUES FOR THE PARAMETERS

For each rankingR; ;, and for each pair of parameters,, P;, we find the probability thaf’; is more important tha®;.
Based on the probabilities, we construct the global ranking

Consider a specific error metri€;, and a specific objective function metrit/;. Assume that the importance factor of the
parameterP;, IF,; ;, is normally distributed/\/(/\t,l-_,j,oQ). The observed value of JE; in a specific experiment is denoted
by if:. ;. We normalize the importance factors to have a maximum vEluerhe mean of IFs are assumed to be uniformly
distributed in[0, W].

For each two parameter§ and P, given the BP-design experiment importance valugs; ;, andif: ; ;, we find the
probability thats ; ; > A, Pr(Xs:; > Asj;). The conditional probability can be written in the Bayesiarmat as

Bs,t,i,j :Pr()\sz] el A251]|IF‘513 —Zfsz]aIFtlg _Z.ftlj)
Pr(lFyij =ifsij, 1Fij = ifijlAsig = Aig) Pr(Asij = A w)
PT(IFs,i,j - ifs,i,jalFt,’L,j — th,l,j)

Since there is no prior information about the distributi@fs); ; ; and \;; j, we assume thaPr(Xs;; > Ai ;) = %
Furthermore,

9)

Pr(IFs; =1fsij, 1 Fi; ”t7i,.7'|/\s ij = At m)

w w
dyd:c
P(IFSZ]_Z.fsljalFt’Lj_Z.ft’Lj|)\SZ]_U7)\t1]_I) =
/m /y Ww

woo (y—ifs,ij) 1 (w—ify)° i d 10
JR— o2 o2
w2 /;;:O /y_z V2mo? 7 V2ro? o v (10)

Similarly, one can find
Pr(IFs;j =ifsij:IFrij=1frij) = Pr(IFs;j;=1ifsij,IFri;="1ftijlNsij = Mij)Pr(Xsiij = Aeyinj)
+ Pr(IFsij=ifsij IFiij =1iftijlhsij < Aij)Pr(Xsij < Aeij)-

Now, for each parameteE);, we define the global importance factof,,

Nem Nom

ift ZZ Z ﬁstlg- (11)

i=1 j=1 s=1,s#t

Parameters with a largélf, have a higher probability of being important compared to dkieer parameters. We sort the
parameters based on their correspondifigvalues.

V1. EVALUATION RESULTS

We have applied the developed method to real distance nmexasut data for location estimation problem. Parametets tha
were described in Section Il are ranked using our methogoM# illustrate how the various ranking lists differ. Thewe
combine the rankings to obtain a global ranking.

The distance measurements data from the CENS lab [18] istosexdhluate the effect of each parameter. This database is
based on the real distance measurements for SH4 nodes [[18pdes are located in fixed locations. Distance measurement
is done multiple times and in different days. The measurésnare based on the time of flight (ToF) [19] of the signals. In
this method, the time of flight of an acoustic signal is usedi¢termine the distance between two nodes. It was previously
shown that the noise in the measurements is strongly ndic-§28]. Therefore, parametric methods based on optirgizive
results according to a fixed noise distribution do not yiettd) location estimations.

We have used Integer Linear Programming (ILP) to sample #tabdse for drawing instances with specific properties. In
each experiment, the PB-design matrix implies a specifisevédr each parameter. Extreme and normal values for paeasnet
are shown in Table |. The values are determined based on #heneasurements’ error. In all experiment$,is equal to
20(m?).

The following abbreviations are used in this section.



Parameter DOF NLM SMAS DNGLM
L1 | Ls | ML | L1 | Ls | ML | L1 | Ls | ML | L7 | Lz | ML
Ns 4 4 2 6 5 6 2 2 2 3 2 1
Bg 2 1 1 4 2 3 4 9 4 1 4 3
€2 1 2 3 2 3 4 3 3 3 5 9 6
MAX 2 6 8 7 9 10 | 10 | 6 4 5 7 7 8
PER 7 9 10 | 10 | 8 5 7 8 7 9 10 | 9
Dg 3 3 4 1 1 1 1 1 1 2 1 2
MINL g 8 6 8 7 6 9 8 5 10 | 4 3 10
MAXLg | 10 | 10 | 9 5 9 8 10 | 10 | 8 10 | 5 4
Is 9 5 5 8 7 7 9 7 9 6 6 5
MIND g 5 7 6 3 4 2 5 6 6 8 8 7
TABLE I

IMPORTANCE OF DIFFERENT PARAMETERS FOR DIFFERENT OBJECTIVWEINCTIONS AND METRICS

o o o
S (2] [e]
T T T

Normalized importance value
o
N
T

1 T
l:lSMAG’LZ
-DOF,L2
0 I " | 11 I ]

N z MAX g PER 2 D, MINLg  MAXLg g MINDg

S

Fig. 2. Importance of different parameters for differenjective functions and metrics.

« ML : Maximum Likelihood

o DOF : Drifting of the Objective FunctionM{/;)

o NLM : Nearest Local Minimum {/5)

o SMAS : Slope Measurement Around the Solutidi

o DNGLM: Depth of Non-Global Local Minimum §{4)

Table Il shows the result of PB-based evaluations. Eachnpetex is ranked based on the specific error metric and the
specific OF metric. It can be seen that a specific parametedifiasent rankings under various error metrics and OF rostri
For example, the total number of nodéés, is ranked 1, 2, 3, 4, 5, and 6 in different cases. Thus, a Bp@arameter does
not have the same importance under various metrics. It caede that the number of nodégg, and the number of beacons,
Bg, are the two most important parameters in most evaluatiBtEReg and MAXLg have overall low rankings.

The comparative ranks of parameter pairs tend to vary as Wwigluire 2 shows the normalized importance factor (IF) for
two cases: DOF and SMAS with, error metric. For DOF, the number of beacafis is strongly more important than the
mean squared erraf. The mean degree of nodeSg, is weakly more important than the mean squared efoiThe same
behavior can be seen in SMAS. From our visual inspectiorsntimber of node&Vs and the mean degree of nodBg are
the most important while others almost have the same impeetéactor (IF). The ranks of the mean squared etfoand
maximum edge length MAXLE are 3 and 10 respectively. However, their importance facéoe very close.

The discrepancy in the rank and comparative ranks confirnpostulation that averaging the parameter ranks is not the be
way for combining them. Thus, we use the combining methotwres introduced in Section V. The probability comparisons
for the values in Figure 2 are shown in Tables Ill and IV. Thielda compare the importance of parameters. For example,
for the DOF4L+, Figure 2 states thaBg is strongly more important tha® FR.z. Table Il shows that the probability that
the mean ofBj is larger than the mean dPE R is 0.984. Similarly, MAX 2. and PER. have approximately the same
importance. The probability that the mean of Mér?(|s larger than the mean dPER,: is °0.49. This probability value is
close to 0.5, meaning that there is not enough informatiototapare the values.

Table IV compares the importance factors of SMAS for the error metric. Table IV confirms the result. The rows
corresponding taVg, and Dg have values close tb confirming the high importance of the two parameters. Whenparing
other parameters, the probability that one parameter istgréhan the other is abo0is. It confirms our previous postulation
that simple rankings are not sufficient for concluding thebgl parameter ordering and the importance factors arefiseynt
as well.



Parameter| Ng | Bs | & MAX. | PER> | Ds | MINLs | MAXLs | Ts MIND g
Ng 0 0.071 | 0.417 | 0.725 0.716 | 0.403 | 0.708 | 0.691 0.598 | 0.748
Bg 0.929 | 0 0.899 | 0.993 0.984 | 0.884| 0.977 | 0.981 0.939 | 0.984
2 0.583 | 0.101 | 0 0.787 0.786 | 0.476| 0.756 | 0.754 0.660 | 0.798
MAX . | 0.275| 0.007 | 0.213| 0 0.490 | 0.193| 0.464 | 0.477 0.354 | 0.515
PER!g 0.284 | 0.016 | 0.214 | 0.510 0 0.202 | 0.469 | 0.499 0.357 | 0.528
Ds 0.597 | 0.116 | 0.524 | 0.807 0798 |0 0.785 | 0.795 0.678 | 0.821
MINLg | 0.292 | 0.023 | 0.244 | 0.536 0531 | 0.215| 0 0.519 0.392 | 0.545
MAXL g | 0.309 | 0.019 | 0.246 | 0.523 0501 | 0.205| 0.481 |0 0.371 | 0.537
s 0.402 | 0.061 | 0.340 | 0.646 0.643 | 0.322| 0.608 | 0.629 0 0.671
MINDg | 0.252 | 0.016 | 0.202 | 0.485 0.472 | 0.179| 0.455 | 0.463 0.329 | 0

TABLE Il
DRIFTING OF OBJECTIVE FUNCTION ANDL2 METRIC: Pr(; j s > i j,t|Vi j,s = Vi j,s) Vi,j,¢ = Vi j,t) WHERE THE FIRST COLUMN ISPs AND THE
FIRST ROW ISP%.

Parameter| Ng Bg % MAX 2 | PER: Ds MINLs | MAXLg | Ig MIND g
Ng 0 0.947 [ 0.947 | 0.936 0.944 0.285 | 0.939 0.931 0.937 | 0.958
Bs 0.053| 0 0.493 | 0.506 0.504 0.017 | 0.501 0.496 0.500 | 0.504
€ 0.053 | 0.507 | 0 0.509 0.505 0.018 | 0.504 0.516 0.507 | 0.511
MAX 2 0.064 | 0.494 | 0.491 | O 0.505 0.017 | 0.504 0.506 0.499 | 0.499
PER 0.056 | 0.496 | 0.495 | 0.495 0 0.017 | 0.492 0.496 0.502 | 0.500
Dg 0.715 | 0.983 | 0.982 | 0.983 0.983 0 0.975 0.984 0.974 | 0.980
MINL g 0.061 | 0.499 | 0.496 | 0.496 0.508 0.025| 0 0.506 0.501 | 0.488
MAXL ¢ | 0.069 | 0.504 | 0.484 | 0.494 0.504 0.016 | 0.494 0 0.502 | 0.494
Is 0.063 | 0.500 | 0.493 | 0.501 0.498 0.026 | 0.499 0.498 0 0.505
MIND g 0.042 | 0.496 | 0.489 | 0.501 0.500 0.020 | 0.512 0.506 0.495 | 0

TABLE IV
SMASAND La METRIC: Pr(X;,j,s > Ai jt|Vij,s = Vij,s» Vij,t = Vi j,t) WHERE THE FIRST COLUMN ISPs AND THE FIRST ROW ISP;.

The global ranking based on the introduced combining methdgkection V is shown in Table V. The table indicates that
the mean degree of nodé is the most important parameter. This result is consistétht Wable || where the mean degree
of nodesDy is the most important parameter in the seven scenarios.

The global ranking results could be used to improve the gessliof location estimations in ad-hoc networks. To deploy a
network or on an already deployed network, one could exgheitresults by considering the analyzed effect of each paterm
on the estimated location’s accuracy. Based on the conttraf the problem, the best parameters for improving thienastd
locations could be determined. For example, when thereiigations for the mean degree of the graph, one can increase
the number of nodes in the network to increase the accuradhieoestimated location. Note that, changing one parameter
typically only improves the accuracy up to a certain pointttier changing the parameter would not yield an improvenmen
the estimation accuracy.

VII. CONCLUSION

We introduce a systematic methodology for determining tte@lenge of modeling a pertinent data set. The complex nuglel
problem is studied as an instance of a nonlinear optimiagtimblem that consists of an objective function (OF) andtaoge
constraints. The data set is the optimization input and stiemated model is the output. We characterize the input ®t afdts
characteristic parameters. We define four new metrics #rabe used to evaluate the goodness of an input for being iaptim
by a specific OF. The introduced metrics are: (1) driftingtaf OF, (2) distance to the nearest local minimum, (3) theestidp
the OF around the solution, and (4) the depth of the non-global minimums. We employ Plackett and Burmann simulation
methodology to systematically evaluate the impact of werimput parameters under each metric. Finally, we presemdthod
for combining the effect of parameters under different fetto determine the global impact of each parameter. Wezeitil
the new methodology for estimating the locations of the sddean ad-hoc network where the distance measurement data is
available. Three common forms of error metrics are consittet,, L, and L.,. Our evaluations show that the mean degree
on the nodes and the number of nodes in the network are the tveb important parameters for estimating the locations.
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Parameter| Ns | Bs | €2 | MAX.» | PER> | Ds | MINLs | MAXLs | Ts | MINDs
Rank 2 3 |4 |8 10
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TABLE V
GLOBAL RANKS.
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