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Abstract

We introduce a novel methodology for determining the difficulty of modeling a given data set. The method utilizes formulation
of modeling as an optimization problem instance that consists of an objective function and a set of constraints. The properties of
the data set that could affect the quality of optimization are categorized. In large optimization problems with multiple properties
that contribute to the solution quality, it is practically impossible to analytically study the effect of each property. A number of
metrics for evaluating the effectiveness of the optimization on each data set are proposed. Using the well known Plackett and
Burmann fast simulation methodology, for each metric, the impact of the categorized properties of the data are determined for the
specified optimization method. A new approach for combiningthe impacts resulting from different properties on variousmetrics
is described. The method is illustrated on distance measurement data used for estimating the locations of wireless nodes in ad-hoc
networks.

I. I NTRODUCTION

Years of continuous research in statistical modeling and optimization has produced a multitude of readily available methods
and tools that could be employed for building models for a given data set [1]. Often times, a new statistical modeling method
is theoretically analyzed for meeting an optimality criteria under certain assumptions and/or for its runtime complexity. Many
modeling practices today concern a large body of data that does not conform with typical assumptions needed to analytically
declare an optimality criteria. In such scenarios, the modeling method is usually evaluated by how it performs on sets of
real or simulated data. For example, some statistics of the resulting prediction error and/or a defined criterion (e.g.,Bayesian
information criterion (BIC)) is used for experimental evaluation of the method on the data. A relevant question to answer is
if indeed modeling the pertinent data set requires introduction of a new modeling method, or the data could have been justas
well addressed by other known methods. Aside from the theoretical properties, a useful new methodology is the one that can
build models for difficult-to-characterize data that is hard to comprehend by other tools and methods.

Addressing the problem is important since it would introduce criteria for quantifying the difficulty of modeling a givendata
set. This would provide impetus for inventing newer modeling methods and tools that can address the challenging aspect of
the difficult-to-characterize data. Simultaneously, formation of new tools would depend upon finding truly challenging data
sets that need to be modeled, as opposed to building new models that have a limited practical usage. Formation of sets of
challenging data would also build a foundation for comparison among the various modeling methods and algorithms that
attempt to model the data set. The problem of finding difficult-to-characterize data is complicated by variations in properties
of the underlying data sets collected by different sources.This includes difference in size, format, hidden covariates, and the
form of noise present in the collected data. It is not easy to find unique metrics that could be used for comparison of different
modeling methods.

To compare various modeling methods that address the same class of problems, the current practice is to use common data.
The common data is typically publicly available to downloadand use by the researchers. Examples of public database for
such data includes [2], [3]. Sensitivity of modeling error or other discrepancy metrics to the underlying noise in data has been
widely studied for a number of modeling methods [4] [5]. Also, the consistency of estimators based on a number of strong
assumptions on the distribution of the data has been pursued[6]. However, no generic method or tool for determining the
difficulty in modeling a data set free of imposing strong assumptions – such as Normality or other closed form distributions
of noise – is available. Note that the runtime complexity of amodeling method is an orthogonal concept. The complexity
measures the worst-case computational time for the algorithm used for finding the model. Analyzing the worst-case runtime
complexity does not help in understanding the complexity ofcharacterizing a specific data set.

Finding an appropriate model for a data set is usually accomplished by fitting model parameters on the data such that a
measure of accuracy is optimized, e.g., minimizing the meansquare error. To analyze the model’s performance on the data,
we study the modeling optimization problem that consists ofan objective function (OF) and a number of constraints. The data
set is considered as the input to the optimization problem. We introduce a number of metrics that measure the complexity
of the optimization problem based on the OF properties and constraints. The challenge in most optimization problems is the
existence of nonlinearities that make the solution space coarse, causing bumpiness and multiple local minimums. We propose
a number of measures for the smoothness of the OF and constraints space that estimate the feasibility of reaching the global
minimum.

To enable studying the effectiveness of the optimization ona data set, one should characterize the properties of the pertinent
data set. The properties are specific to each data set and eachproblem. In this paper, we focus on the problem of modeling the



location of nodes in a wireless network by using erroneous mutual distance measurements between a number of node pairs.
However, we emphasize that our method is generic and can be used for determining the challenge in addressing any data set
that includes forming an optimization problem. The location estimation problem is selected for four reasons. First, itis a very
well addressed problem in the literature and there are several methods that are developed for this problem [7] [8] [9] [10] [11].
Second, there are a number of publicly available data sets for the measured distance data in the networks [2] [12] [13]. Third,
the nonlinear relationship between noise in measurements data and location of nodes makes the modeling problem extremely
challenging. Fourth, localization problem is an NP-complete problem, i.e., in the worst case, there is no algorithm that can
solve it in polynomial time [14] [7].

We characterize a number of properties of the measurement data set that could affect the quality of location estimation.
Studying the interaction between the identified data properties and optimization metrics requires long simulations and analyses.
We use the well-known Plackett and Burmann [15] simulation methodology to rapidly study the complex interactions of
properties. A new approach for combining the impacts resulting from different properties of data on various optimization
metrics is described. The sensitivity of optimization withrespect to the various parameter ranks is presented.

To the best of our knowledge, this is the first work that systematically studies the impact of the data set on the optimization
problem employed for building statistical models. Most of the previous works are devoted to modeling and analysis of the
worst case complexity. The results of our analyses could be directly used for constructing benchmarks for the problem. The
proposed work aims at creating a unified framework based on real data that can help evaluation and comparison of desperate
efforts that address the same problem.

The remainder of the paper is organized a follows. In the nextsection, location estimation problem and our notations are
formally defined. In Section III, we devise a number of metrics that are used for OF evaluation. The simulation methodology
is described in Section IV. In Section V, we illustrate how the results of different metrics can be combined. We have applied
the derived method on the measurements from a real network inSection VI. We conclude in Section VII.

II. PRELIMINARIES

In this section, we present the formal definition of the problem. We also describe the notations that are used throughout the
paper.
Location estimation problem: Given a set ofN nodes denoted byV = {v1, v2, . . . vN} in R

d (d = 2, 3). For a given subset of
node pairs denoted byE ⊂ V ×V , mutual distance of nodes are measured,i.e., for all (vi, vj) ∈ E, l(vi, vj) = d(vi, vj)+ ǫi,j

is known;d(vi, vj) is the Euclidean distance between the nodesvi andvj ; ǫi,j is the distance measurement error. Moreover,
there is a subset withM(> 2) nodes denoted byVB = {v1, . . . vM}, VB ⊂ V such that the nodes inVB have their exact
location information (coordinates). The nodes in the setVB are called thebeaconnodes.

Question: find the location of all possible nodes.
In this paper, we focus on two-dimensional networks. Extension to three-dimensional networks is straightforward. Coordinates

of the nodevi are denoted by(xi, yi).
The location estimation problem can be formulated as an optimization problem. The goal is to find the coordinates of

K = N −M non-beacon nodes such that the discrepancy (error) betweenthe measured distance data and the nodes’ distances
estimated from the final coordinates is minimized. In other words,

FL(xM+1, yM+1, xM+2, yM+2, . . . xN , yN ) =
∑

(vi,vj)∈E

L(evi,vj
) (1)

evi,vj
= l(vi, vj) −

√

(xi − xj)2 + (yi − yj)2

WhereL : R → R
+ is a function that is typically a metric (measure) of error.FL : R2K → R

+ is known as objective
function (OF) of the optimization problem.

Note that the OF of the location estimation problem is not necessarily a linear or convex function. There are a number of
fast and efficient tools that are developed for linear and convex programming. However, there is no oracle algorithm thatcan
solve all optimization problems. To find the minimum of a nonlinear problem like location estimation, there are a number of
heuristic methods that may be employed. The nonlinear system solvers have a tendency to get trapped in a local minimum
and do not necessarily lead to the global minimum. Although there are a variety of minimization algorithms, most of them
are common in one subcomponent that starts from an initial point and follow the steepest decent to reach the minimum. The
algorithms differ in how they choose the starting point, howthey select the direction in the search space, and how they avoid
local (non-global) minima. Thus, the shape of the OF around the global minimum is an important factor in finding the solution.
Data set: The measurement data used in this problem consists of measured distances between a number of static nodes in the
plane. Measurements are noisy; there are multiple measurements for each distance. The true location of the nodes is known
and will be known as the ground truth. As explained in SectionI, we sample the data set to obtain instances with specific
properties.
Parameters: We will define a number of parameters that can be extracted from the data set. The sensitivity of the location
estimation to the variations in each parameter will be studied.



We study the effect of different parameters in the location estimation problem and identify the hard instances of measurement
data. Ten parameters are studied:

• P1 – Number of nodes(N ): the total number of nodes in the network.
• P2 – Number of beacons(B): the number of beacon nodes with known locations.
• P3 – Mean squared error(ǫ2): mean squared error of distance measurements.
• P4 – Maximum allowed squared error(MAX ǫ2m

): the maximum squared error that can possibly exist in distance mea-
surements.

• P5 – Percentage of large errors(PERǫ20
): percentage of squared distance measurement noises that are higher than a

specific valueǫ20.
• P6 – Mean degree(D): mean degree of the nodes in the network. Degree of a nodevi is define as number of nodes that

know their mutual distance tovi.
• P7 – Minimum length(MINL): possible minimum length of the measured distances between nodes in the network.
• P8 – Maximum length(MAXL): possible maximum length of the measured distances between nodes in the network.
• P9 – Mean length(l): mean length of the measured distances between nodes in thenetwork.
• P10 – Minimum degree(MIND): a lower bound on the possible minimum degree of the nodes in the network.

To study the effect of the parameters, we construct a varietyof network instances with different properties. The networks
are constructed by selecting subsets of an implemented network. Having specific values for parameters, we use Integer Linear
Programming (ILP) to extract each subset such that it meets specified properties. To do so, we model parameter constraints as
linear equalities and inequalities. Some parameters such as the mean squared error,ǫ2, can be easily stated by linear equalities
and inequalities. But some parameters such as the mean degree of the nodes,D, need a mapping to be stated in linear terms.
The description of the exact procedure of modeling by linearconstraints is beyond the scop of this paper [13].

III. M ETRICS

In this section, we introduce metrics for error and OF that are used for evaluating the importance of different parameters
for location estimation. Three error metrics and four OF metrics are presented. Thus, a total of twelve combined metricsare
used to evaluate the importance of parameters.

A. Error Metrics

The three error metrics studied in this paper are:L1, L2, and the maximum likelihood (ML).L1 andL2 are the common
error norms in theLp family defined as:

Lp(evn,vm
∈ E) = (

∑

(vn,vm)∈E

|evn,vm
|p)1/p if 1 ≤ p < ∞.

To find the error metric corresponding to ML, we need to model the noise in distance measurements. To model the noise, the
probability density function (PDF) of errors,fm, for the distance measurements should be approximated. Different methods are
developed to approximate PDF of noise,fm [13]. We have used kernel fitting that is a simple and known PDFapproximation
method [1]. To have the maximum likelihood estimation for the nodes’ locations, we find the nodes’ coordinates such that
they maximize

∏

(vn,vm)∈E

fm(evn,vm
) = exp{

∑

(vn,vm)∈E

ln(fm(evn,vm
))} (2)

or equivalently minimize
∑

(vn,vm)∈E

− ln(fm(evn,vm
)). (3)

Note that we assume noise in distance measurements are independently identically distributed. Following the same notations
as Equation 1 for Equation 3, for the ML estimation we consider the following error metric:

LML(evn,vm
) = − ln(fm(evn,vm

)). (4)

B. Objective Function (OF) Metrics

We describe metrics that are used for evaluating OFs. The metrics are introduced based on the properties of OF that are
effective in optimization. These metrics are such that theyassign larger values to the more difficult-to-optimize OFs.In defining
the OF metrics, we assume that there is a fixed instance of location estimation data. Thus, for a fixed error metric, the OF
would be fixed. Metrics of OF are denoted byM : C → R+ whereC is the functional space that contains all OFs.
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Fig. 1. Metrics and objective function (OF).

1) Drifting of Objective Function (OF) :Since there is noise in distance measurements, true location of the nodes is often
not the global minimum of the OF. Location of the OF’s global minimum is a measure of the goodness of the OF. Figure 1
illustrates the effect of noise on the OF. For simplicity of presentation, a one-dimensional OF is shown. In this figure,pc is
the correct nodes’ location. However, the global minimum ofthe OF is drifted topgm because of the noise. We consider the
distance betweenpc andpgm as an OF metric and denote it bydrifting.

To find the drifting distance, we start from the true locations as the initial point. Next, the steepest descent directionof the
OF is followed until a local minimum is reached. The Euclidean distance between the true locations and this local minimum
quantifies the drifting metric (denoted byM1) for the pertinent OF.

2) Nearest Local Minimum :Having a number of local minimums around the global minimum in an OF may cause the
optimization algorithm to get trapped in one of the non-global local minimums. It is challenging to minimize such an OF since
the global minimum is hard to reach. Figure 1 illustrates thephenomena. The OF has multiple local minimums at pointspm1,
pm1 and so on. The steepest decent method leads to the global minimum if and only if we start from a point betweenpm1

andpm2. Hence, having a small distance betweenpm1 andpm2 would complicate the selection of the initial starting point.
We introduce a method to measure the distance of the true location from the local minimums around the global minimum.

Because of curse of dimensionality, it is not possible to findall the local minimums around the global minimum. We randomly
sample the OF in multiple directions. The nearest local minimum is computed for each randomly selected direction. We
statistically find the distance to the nearest local minimumby using multiple samples.

AssumeF : R2K → R
+ is the OF. A random direction inR2K is a vector in this space. Let us denote it byv ∈ R

2K .
First, we define a new functionh : R+ → R

+ such thath(t) = F (pc + tv) wherepc is a vector containing the true locations
of nodes. Second, we find the local minimum ofh with the smallest positivet and denote it byt1. We repeat this procedure
for T times and find allti’s. T is the number of samples. Finally, since it is expected that the defined metric has a larger value
for more difficult-to-optimize OF, we define the nearest local minimum metric to be

M2(F ) =

(

1

T

T
∑

i=1

ti

)−1

. (5)

3) Measuring the Slope of OF Around the Solution :The slope of OF,i.e., the norm of OF’s gradient, around the global
minimum is a very important parameter in the convergence rate of the optimization algorithm. OFs with a small slope around
the true location converge to the global minimum very slowly.

Thus, measuring the slope of the OF around the global minimumcan be used to quantify the goodness of OF. Again, we
measure slope of the OF in multiple random directions aroundthe true locations, and statistically compute this metric.OFs
with sharp slopes around the global minimum are easier to optimize. This can be seen in Figure 2 where the right side of
the global minimum,pgm, has a sharp slope. If the initial point of steepest descent algorithm is betweenpgm and pm2, it



converges to the global minimum very fast. However, on the left side of global minimum,pgm, there is a gradual slope. Thus,
the steepest descent algorithm would converge very slowly on the left side. We define the true locations’ slope metric as

M3(F ) =

(

1

T

T
∑

i=1

slope in i-th random direction

)−1

. (6)

Note that the slope of the i-th random direction,vi, is measured atpgm + σvi whereσ is a small number and is a user’s
defined criterion.

4) Depth of the Non-Global Local Minima:Optimization problems that have an OF with deep local minimums around
the global minimum are difficult to solve. A number of heuristic optimization methods take advantage of the shallow local
minimums to avoid non-global local minimums, e.g., simulated annealing [16]. In figure 2, avoiding the local minimum atpl1

is much easier than local minimum atpl2.
We define the third metric for quantifying the goodness of an OF on the data, as the depth of the non-global local minimums.

We randomly selectT local minimums around the true locations. Assuming thatmi is the OF value at the randomly selected
local minimums, define

M4(F ) =

(

1

T

T
∑

i=1

mi

)−1

. (7)

IV. SIMULATION METHODOLOGY

To find the effect of each parameter, we study all combinations of parameters. Assume each parameter has just two values.
If we havek parameters then we have to study2k combinations that is computationally intractable. Instead, we use Plackett
and Burman (PB) [15] fast simulation methodology that is a very well known method for reducing the number of simulations.
Number of simulation in PB is proportional to the number of parameters.

In PB design, two values are assigned to each parameter: a normal value and an extreme value. The normal value is the
typical value of the parameter while the extreme value is thevalue that is outside the typical range of the parameter. The
extreme value often makes the problem either harder or easier to solve. A number of experiments with normal and extreme
values of parameters are conducted.

Experiments are arranged based on a given matrix denoted by the design matrix. Design matrix hask columns (k is the
number of parameters) ands rows wheres is the number of experiments the should be set up as follows. The elements of the
design matrix are either0 or 1. We set up an experiment for each row. Values of the parameters depend on the elements on
the row: 0 indicates that the normal value of the parameter isused and 1 indicates that the extreme value of the parameter is
used in the experiment corresponding to the row.

Assume that we have selected an error metric,Li, and an objective function metric,Mj. The OF itself denoted byFLi

would be fixed. For each row of the design matrix,h, we setup an experiment based on the elements of that row and measure
the goodness of the objective functionMj(FLi

) and save it in another array element denoted byri,j,h. The corresponding
values are summed up for computing the importance factor (IF) of each parameter. For each parameterPt, we define

IFt,i,j = |
s
∑

h=1

αh,tri,j,h| (8)

wheres is the number of experiments (number of rows in the design matrix), andαh,t is 1 if the extreme value of the parameter
Pt is used in theh-th experiment; otherwise,αh,t is−1. The absolute value of IF is used to evaluate the effect of each parameter.
The largest value indicates the most important parameter. For i-th error metric andj-th OF metric, IFt,i,j > IFu,i,j means that
the parameterPt is more important thanPu. Thus, for each error metric,Li, and for each objective function metric,Mj, we
can rank parameters based on their effect on the estimated location. This ranking is denoted byRi,j .

More precise result can be obtained by using the foldover design matrix [17]. In the foldover design matrix, all rows of the
single design are repeated after its last row but 0s and 1s areexchanged in the repeated rows.

V. COMBINING DIFFERENT RANKS

In this section, we explain how to combine the rankings of theparameters under study to obtain a global order for them.
Using the ranking method in the previous section, we would have different rankings for various error metrics and OF metrics.
Since there are three error metrics and four OF metrics, there would be twelve different importance ranking lists of parameters;
each parameter may have a different rank in each ranking list.

Each rank is obtained based on a specific property of the optimization problem. As it is explained in Section III, for each
error and OF metric, the parameters are ranked based on the importance factor obtained from PB-design. IFs with large
discrepancies lead to a stronger ranking compared to IFs with small discrepancies.



Parameter NS BS ǫ2
S

MAX ǫ2m
PERǫ20

DS MINL S MAXL S lS MINDS

Normal Value 55 12 10 (m2) 200 (m2) 50 10 5 (m) 40 (m) 20 (m) 4
Extreme Value 80 3 50 (m2) 500 (m2) 20 6 10 (m) 60 (m) 30 (m) 3

TABLE I
NORMAL AND EXTREME VALUES FOR THE PARAMETERS.

For each ranking,Ri,j , and for each pair of parameters,Ps, Pt, we find the probability thatPs is more important thanPt.
Based on the probabilities, we construct the global ranking.

Consider a specific error metric,Li, and a specific objective function metric,Mj . Assume that the importance factor of the
parameterPt, IFt,i,j , is normally distributedN (λt,i,j , σ

2). The observed value of IFt,i,j in a specific experiment is denoted
by ift,i,j. We normalize the importance factors to have a maximum valueW . The mean of IFs are assumed to be uniformly
distributed in[0, W ].

For each two parameters,Ps and Pt, given the BP-design experiment importance valuesifs,i,j, and ift,i,j, we find the
probability thatλs,i,j ≥ λt,i,j , Pr(λs,i,j ≥ λt,i,j). The conditional probability can be written in the Bayesianformat as

βs,t,i,j = Pr(λs,i,j ≥ λt,i,j |IFs,i,j = ifs,i,j, IFt,i,j = ift,i,j) =

Pr(IFs,i,j = ifs,i,j , IFt,i,j = ift,i,j|λs,i,j ≥ λt,i,j)Pr(λs,i,j ≥ λt,i,j)

Pr(IFs,i,j = ifs,i,j , IFt,i,j = ift,i,j)
. (9)

Since there is no prior information about the distributionsof λs,i,j and λt,i,j , we assume thatPr(λs,i,j ≥ λt,i,j) = 1
2 .

Furthermore,

Pr(IFs,i,j = ifs,i,j , IFt,i,j = vt,i,j |λs,i,j ≥ λt,i,j) =
∫ W

x=0

∫ W

y=x

Pr(IFs,i,j = ifs,i,j , IFt,i,j = ift,i,j|λs,i,j = y, λt,i,j = x)
dy

W

dx

W
=

1

W 2

∫ W

x=0

∫ W

y=x

1√
2πσ2

e
(y−ifs,i,j )2

2σ2
1√

2πσ2
e

(x−ift,i,j )2

2σ2 dy dx. (10)

Similarly, one can find

Pr(IFs,i,j = ifs,i,j , IFt,i,j = ift,i,j) = Pr(IFs,i,j = ifs,i,j , IFt,i,j = ift,i,j|λs,i,j ≥ λt,i,j)Pr(λs,i,j ≥ λt,i,j)

+ Pr(IFs,i,j = ifs,i,j , IFt,i,j = ift,i,j|λs,i,j < λt,i,j)Pr(λs,i,j < λt,i,j).

Now, for each parameter,Pt, we define the global importance factor,ift,

ift =

Nem
∑

i=1

Nom
∑

j=1

Np
∑

s=1,s6=t

βs,t,i,j . (11)

Parameters with a largerift have a higher probability of being important compared to theother parameters. We sort the
parameters based on their correspondingift values.

VI. EVALUATION RESULTS

We have applied the developed method to real distance measurement data for location estimation problem. Parameters that
were described in Section II are ranked using our methodology. We illustrate how the various ranking lists differ. Then,we
combine the rankings to obtain a global ranking.

The distance measurements data from the CENS lab [18] is usedto evaluate the effect of each parameter. This database is
based on the real distance measurements for SH4 nodes [13]. 91 nodes are located in fixed locations. Distance measurement
is done multiple times and in different days. The measurements are based on the time of flight (ToF) [19] of the signals. In
this method, the time of flight of an acoustic signal is used todetermine the distance between two nodes. It was previously
shown that the noise in the measurements is strongly non-static [20]. Therefore, parametric methods based on optimizing the
results according to a fixed noise distribution do not yield good location estimations.

We have used Integer Linear Programming (ILP) to sample the database for drawing instances with specific properties. In
each experiment, the PB-design matrix implies a specific value for each parameter. Extreme and normal values for parameters
are shown in Table I. The values are determined based on the real measurements’ error. In all experiments,ǫ20 is equal to
20(m2).

The following abbreviations are used in this section.



Parameter DOF NLM SMAS DNGLM
L1 L2 ML L1 L2 ML L1 L2 ML L1 L2 ML

NS 4 4 2 6 5 6 2 2 2 3 2 1
BS 2 1 1 4 2 3 4 9 4 1 4 3
ǫ2
S

1 2 3 2 3 4 3 3 3 5 9 6
MAX ǫ2m

6 8 7 9 10 10 6 4 5 7 7 8
PERǫ20

7 9 10 10 8 5 7 8 7 9 10 9

DS 3 3 4 1 1 1 1 1 1 2 1 2
MINL S 8 6 8 7 6 9 8 5 10 4 3 10
MAXL S 10 10 9 5 9 8 10 10 8 10 5 4
lS 9 5 5 8 7 7 9 7 9 6 6 5
MINDS 5 7 6 3 4 2 5 6 6 8 8 7

TABLE II
IMPORTANCE OF DIFFERENT PARAMETERS FOR DIFFERENT OBJECTIVEFUNCTIONS AND METRICS.
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Fig. 2. Importance of different parameters for different objective functions and metrics.

• ML : Maximum Likelihood
• DOF : Drifting of the Objective Function (M1)
• NLM : Nearest Local Minimum (M2)
• SMAS : Slope Measurement Around the Solution (M3)
• DNGLM: Depth of Non-Global Local Minimum (M4)

Table II shows the result of PB-based evaluations. Each parameter is ranked based on the specific error metric and the
specific OF metric. It can be seen that a specific parameter hasdifferent rankings under various error metrics and OF metrics.
For example, the total number of nodes,NS , is ranked 1, 2, 3, 4, 5, and 6 in different cases. Thus, a specific parameter does
not have the same importance under various metrics. It can beseen that the number of nodes,NS , and the number of beacons,
BS , are the two most important parameters in most evaluations;PERǫ20

and MAXLS have overall low rankings.
The comparative ranks of parameter pairs tend to vary as well. Figure 2 shows the normalized importance factor (IF) for

two cases: DOF and SMAS withL2 error metric. For DOF, the number of beaconsBS is strongly more important than the
mean squared errorǫ2S. The mean degree of nodes,DS , is weakly more important than the mean squared errorǫ2S . The same
behavior can be seen in SMAS. From our visual inspections, the number of nodesNS and the mean degree of nodesDS are
the most important while others almost have the same importance factor (IF). The ranks of the mean squared errorǫ2S and
maximum edge length MAXLS are 3 and 10 respectively. However, their importance factors are very close.

The discrepancy in the rank and comparative ranks confirm ourpostulation that averaging the parameter ranks is not the best
way for combining them. Thus, we use the combining method that was introduced in Section V. The probability comparisons
for the values in Figure 2 are shown in Tables III and IV. The tables compare the importance of parameters. For example,
for the DOF-L2, Figure 2 states thatBS is strongly more important thanPERǫ20

. Table III shows that the probability that
the mean ofBS is larger than the mean ofPERǫ20

is 0.984. Similarly, MAXǫ2m
and PERǫ20

have approximately the same
importance. The probability that the mean of MAXǫ2m

is larger than the mean ofPERǫ20
is 0.49. This probability value is

close to 0.5, meaning that there is not enough information tocompare the values.
Table IV compares the importance factors of SMAS for theL2 error metric. Table IV confirms the result. The rows

corresponding toNS , andDS have values close to1 confirming the high importance of the two parameters. When comparing
other parameters, the probability that one parameter is greater than the other is about0.5. It confirms our previous postulation
that simple rankings are not sufficient for concluding the global parameter ordering and the importance factors are significant
as well.



Parameter NS BS ǫ2
S

MAX ǫ2m
PERǫ20

DS MINL S MAXL S lS MINDS

NS 0 0.071 0.417 0.725 0.716 0.403 0.708 0.691 0.598 0.748
BS 0.929 0 0.899 0.993 0.984 0.884 0.977 0.981 0.939 0.984
ǫ2
S

0.583 0.101 0 0.787 0.786 0.476 0.756 0.754 0.660 0.798
MAX ǫ2m

0.275 0.007 0.213 0 0.490 0.193 0.464 0.477 0.354 0.515
PERǫ20

0.284 0.016 0.214 0.510 0 0.202 0.469 0.499 0.357 0.528

DS 0.597 0.116 0.524 0.807 0.798 0 0.785 0.795 0.678 0.821
MINL S 0.292 0.023 0.244 0.536 0.531 0.215 0 0.519 0.392 0.545
MAXL S 0.309 0.019 0.246 0.523 0.501 0.205 0.481 0 0.371 0.537
lS 0.402 0.061 0.340 0.646 0.643 0.322 0.608 0.629 0 0.671
MINDS 0.252 0.016 0.202 0.485 0.472 0.179 0.455 0.463 0.329 0

TABLE III
DRIFTING OF OBJECTIVE FUNCTION ANDL2 METRIC: Pr(λi,j,s ≥ λi,j,t|Vi,j,s = vi,j,s, Vi,j,t = vi,j,t) WHERE THE FIRST COLUMN ISPs AND THE

FIRST ROW ISPt .

Parameter NS BS ǫ2
S

MAX ǫ2m
PERǫ20

DS MINL S MAXL S lS MINDS

NS 0 0.947 0.947 0.936 0.944 0.285 0.939 0.931 0.937 0.958
BS 0.053 0 0.493 0.506 0.504 0.017 0.501 0.496 0.500 0.504

ǫ2
S

0.053 0.507 0 0.509 0.505 0.018 0.504 0.516 0.507 0.511
MAX ǫ2m

0.064 0.494 0.491 0 0.505 0.017 0.504 0.506 0.499 0.499
PERǫ20

0.056 0.496 0.495 0.495 0 0.017 0.492 0.496 0.502 0.500

DS 0.715 0.983 0.982 0.983 0.983 0 0.975 0.984 0.974 0.980
MINL S 0.061 0.499 0.496 0.496 0.508 0.025 0 0.506 0.501 0.488
MAXL S 0.069 0.504 0.484 0.494 0.504 0.016 0.494 0 0.502 0.494
lS 0.063 0.500 0.493 0.501 0.498 0.026 0.499 0.498 0 0.505
MINDS 0.042 0.496 0.489 0.501 0.500 0.020 0.512 0.506 0.495 0

TABLE IV
SMAS AND L2 METRIC: Pr(λi,j,s ≥ λi,j,t|Vi,j,s = vi,j,s, Vi,j,t = vi,j,t) WHERE THE FIRST COLUMN ISPs AND THE FIRST ROW ISPt .

The global ranking based on the introduced combining methodin Section V is shown in Table V. The table indicates that
the mean degree of nodesDS is the most important parameter. This result is consistent with Table II where the mean degree
of nodesDS is the most important parameter in the seven scenarios.

The global ranking results could be used to improve the goodness of location estimations in ad-hoc networks. To deploy a
network or on an already deployed network, one could exploitthe results by considering the analyzed effect of each parameter
on the estimated location’s accuracy. Based on the constraints of the problem, the best parameters for improving the estimated
locations could be determined. For example, when there are limitations for the mean degree of the graph, one can increase
the number of nodes in the network to increase the accuracy ofthe estimated location. Note that, changing one parameter
typically only improves the accuracy up to a certain point; further changing the parameter would not yield an improvement in
the estimation accuracy.

VII. C ONCLUSION

We introduce a systematic methodology for determining the challenge of modeling a pertinent data set. The complex modeling
problem is studied as an instance of a nonlinear optimization problem that consists of an objective function (OF) and a set of
constraints. The data set is the optimization input and the estimated model is the output. We characterize the input by a set of its
characteristic parameters. We define four new metrics that can be used to evaluate the goodness of an input for being optimized
by a specific OF. The introduced metrics are: (1) drifting of the OF, (2) distance to the nearest local minimum, (3) the slope of
the OF around the solution, and (4) the depth of the non-global local minimums. We employ Plackett and Burmann simulation
methodology to systematically evaluate the impact of various input parameters under each metric. Finally, we present amethod
for combining the effect of parameters under different metrics to determine the global impact of each parameter. We utilize
the new methodology for estimating the locations of the nodes in an ad-hoc network where the distance measurement data is
available. Three common forms of error metrics are considered: L1, L2 andL∞. Our evaluations show that the mean degree
on the nodes and the number of nodes in the network are the two most important parameters for estimating the locations.
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Parameter NS BS ǫ2
S

MAX ǫ2m
PERǫ20

DS MINL S MAXL S lS MINDS

Rank 2 3 4 8 10 1 6 9 7 5

TABLE V
GLOBAL RANKS .
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